Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A thermodynamic explanation of the Invar effect

Abstract

The anomalously low thermal expansion of Fe–Ni Invar has long been associated with magnetism, but to date, the microscopic underpinnings of the Invar behaviour have eluded both theory and experiment. Here we present nuclear resonant X-ray scattering measurements of the phonon and magnetic entropies under pressure. By applying a thermodynamic Maxwell relation to these data, we obtain the separate phonon and magnetic contributions to thermal expansion. We find that the Invar behaviour stems from a competition between phonons and spins. In particular, the phonon contribution to thermal expansion cancels the magnetic contribution over the 0–3 GPa pressure range of Invar behaviour. At pressures above 3 GPa, the cancellation is lost, but our analysis reproduces the positive thermal expansion measured separately by synchrotron X-ray diffractometry. Ab initio calculations informed by experimental data show that spin–phonon interactions improve the accuracy of this cancellation over the range of Invar behaviour. Spin–phonon interactions also explain how different phonon modes have different energy shifts with pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phonon DOS of Invar at different pressures.
Fig. 2: Phonon entropy of Invar as a function of pressure.
Fig. 3: Magnetization of Invar as a function of pressure.
Fig. 4: Entropy contributions and thermal expansion.
Fig. 5: Calculated phonon DOS below the Curie transition.
Fig. 6: Mean energy of longitudinal mode and longitudinal IFCs.

Similar content being viewed by others

Data availability

All relevant data from experiments and calculations are available via Zenodo at https://doi.org/10.5281/zenodo.7987363.

Code availability

The computer code used to generate the numerical results is based on the Vienna ab initio simulation package and TDEP, both of which are publicly available. The formulations and algorithms necessary to reproduce the theory results of this study are described in the Methods section and ref. 27.

References

  1. Wasserman, E. F. Invar: moment-volume instabilities in transition metals and alloys. in Handbook of Ferromagnetic Materials Vol. 5, 237–322 (Elsevier, 1990).

  2. Guillaume, C. E. Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique. C. R. Acad. Sci. 125, 235–238 (1897).

    Google Scholar 

  3. Guillame, C. E. Nobel Lecture in Physics https://www.nobelprize.org/uploads/2018/06/guillaume-lecture.pdf (1920).

  4. Kübler, J. Magnetic moments of ferromagnetic and antiferromagnetic bcc and fcc iron. Phys. Lett. A 81, 81–83 (1981).

    Google Scholar 

  5. Pinski, F. J., Staunton, J., Gyorffy, B. L., Johnson, D. D. & Stocks, G. M. Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys. Rev. Lett. 56, 2096 (1986).

    ADS  Google Scholar 

  6. Keune, W. et al. Magneto-volume effects in γ-Fe ultrathin films and small particles. Phys. B 161, 269–275 (1989).

    ADS  Google Scholar 

  7. Weiss, R. J. The origin of the ‘Invar’ effect. Proc. Phys. Soc. 82, 281 (1963).

    ADS  Google Scholar 

  8. Moruzzi, V. L., Marcus, P. M., Schwarz, K. & Mohn, P. Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys. Rev. B 34, 1784 (1986).

    ADS  Google Scholar 

  9. Entel, P., Hoffmann, E., Mohn, P., Schwarz, K. & Moruzzi, V. L. First-principles calculations of the instability leading to the Invar effect. Phys. Rev. B 47, 8706 (1993).

    ADS  Google Scholar 

  10. Schröter, M. et al. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188 (1995).

    ADS  Google Scholar 

  11. van Schilfgaarde, M., Abrikosov, I. A. & Johansson, B. Origin of the Invar effect in iron-nickel alloys. Nature 400, 46–49 (1999).

    Google Scholar 

  12. Ehn, A., Alling, B. & Abrikosov, I. A. First-principles theory of the pressure-induced invar effect in FeNi alloys. Phys. Rev. B 107, 104422 (2023).

    ADS  Google Scholar 

  13. Abrikosov, I. A. et al. Competition between magnetic structures in the Fe rich fcc FeNi alloys. Phys. Rev. B 76, 014434 (2007).

    ADS  Google Scholar 

  14. Ruban, A. V. First-principles modeling of the Invar effect in Fe0.65Ni0.35 by the spin-wave method. Phys. Rev. B 95, 174432 (2017).

    ADS  Google Scholar 

  15. Wassermann, E. F., Acet, M., Entel, P. & Pepperhoff, W. Basic understanding of the relations between Invar, anti-Invar and martensite in Fe-based alloys. J. Magn. Soc. Jpn 23, 385–390 (1999).

    Google Scholar 

  16. Crisan, V. et al. Magnetochemical origin for Invar anomalies in iron-nickel alloys. Phys. Rev. B 66, 014416 (2002).

    ADS  Google Scholar 

  17. Dubrovinsky, L. et al. Pressure-induced Invar effect in Fe-Ni alloys. Phys. Rev. Lett. 86, 4851 (2001).

    ADS  Google Scholar 

  18. Nataf, L., Decremps, F., Gauthier, M. & Canny, B. High-pressure structural study of Fe64Ni36 and Fe72Pt28 Invar alloys at low-temperature. Phys. Rev. B 74, 184422 (2006).

    ADS  Google Scholar 

  19. Kizaki, T. et al. A new theory of the Invar behavior considering the role of phonon. J. Magn. Magn. Mater. 140–144, 245–246 (1995).

    Google Scholar 

  20. Kim, D. S. et al. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon. Proc. Natl Acad. Sci. USA 115, 1992–1997 (2018).

    MathSciNet  Google Scholar 

  21. Adeagbo, W. A., Zayak, A. & Entel, P. First-principles study of lattice instabilities in ferromagnetic L12 Fe3Ni: direct force constants method versus linear response. Ph. Transit. 79, 853–861 (2006).

    Google Scholar 

  22. Ikeda, Y., Körmann, F., Dutta, B., Carreras, A., Seko, A., Neugebauer, J. & Tanaka, I. Temperature-dependent phonon spectra of magnetic random solid solutions. npj Comput. Mater. 4, 7 (2018).

  23. Gruner, M. E., Adeagbo, W. A., Zayak, A. T., Hucht, A. & Entel, P. Lattice dynamics and structural stability of ordered Fe3 Ni, Fe3Pd and Fe3Pt alloys using density functional theory. Phys. Rev. B 81, 064109 (2010).

    ADS  Google Scholar 

  24. Endoh, Y. Lattice dynamics in ferromagnetic invar alloys. J. Magn. Magn. Mater. 10, 177–182 (1979).

    Google Scholar 

  25. Maliszewski, E. & Bednarski, S. Lattice dynamics of Fe0.65Ni0.35 classical Invar. Phys. Stat. Sol. (B) 211, 621–629 (1999).

    Google Scholar 

  26. Heine, M., Hellman, O. & Broido, D. Effect of thermal lattice and magnetic disorder on phonons in bcc Fe: a first-principles study. Phys. Rev. B 100, 104304 (2019).

    ADS  Google Scholar 

  27. Heine, M., Hellman, O. & Broido, D. Theory of thermal properties of magnetic materials with unknown entropy. Phys. Rev. Mater. 6, 113805 (2022).

    Google Scholar 

  28. Sturhahn, W. CONUSS and PHOENIX: evaluation of nuclear resonant scattering data. Hyperfine Interact. 125, 149–172 (2000).

    Google Scholar 

  29. Chumakov, A. I. & Sturhahn, W. Experimental aspects of inelastic nuclear resonance scattering. Hyperfine Interact. 123, 781–808 (1999).

    Google Scholar 

  30. Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301(R) (2011).

    ADS  Google Scholar 

  31. Hellman, O., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013).

    ADS  Google Scholar 

  32. Fultz, B. Phase Transitions in Materials 2nd edn (Cambridge Univ. Press, 2020).

  33. Kobeissi, M. A. Mössbauer study of static and dynamic critical behavior in Fe. Phys. Rev. B 24, 2380 (1981).

    ADS  Google Scholar 

  34. Matsumoto, K. et al. Noncollinear spin structure in Fe-Ni Invar alloy probed by magnetic EXAFS at high pressure. J. Phys. Soc. Jpn 80, 023709 (2011).

    ADS  Google Scholar 

  35. Rhiger, D. Mössbauer Experiments in Iron-Nickel Alloys at High Pressures. PhD dissertation in Physics, Univ. Washington (1972).

  36. Lohaus, S. H. et al. Thermodynamic stability and contributions to the Gibbs free energy of nanocrystalline Ni3Fe. Phys. Rev. Mater. 4, 086002 (2020).

    Google Scholar 

  37. Hayashi, K. & Mori, N. Effects of pressure on magnetization of Fe-Ni and Fe-Pt invar alloys. Solid State Commun. 38, 1057 (1981).

    ADS  Google Scholar 

  38. Rueff, J. P. et al. Magnetism of Invar alloys under pressure examined by inelastic X-ray scattering. Phys. Rev. B 63, 132409 (2001).

    ADS  Google Scholar 

  39. Kamarád, J., Míšek, M. & Arnold, Z. Direct measurement of magnetization isotherms of Fe64Ni36 Invar alloy in a diamond anvil cell. High Press. Res. 34, 365–370 (2014).

    Google Scholar 

  40. Hrubiak, R., Sinogeikin, S., Rod, E. & Shen, G. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum. 86, 072202 (2015).

    ADS  Google Scholar 

  41. Sturhahn, W. Nuclear resonant spectroscopy. J. Phys. Condens. Matter 16, S497 (2004).

    ADS  Google Scholar 

  42. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 764, 156–166 (2014).

    Google Scholar 

  43. Lin, J. Y. Y., Islam, F. & Kresh, M. Multiphonon: phonon density of states tools for inelastic neutron scattering powder data. J. Open Source Softw. 3, 440 (2018).

    ADS  Google Scholar 

  44. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, 1985).

  45. Hubbard, J. The magnetism of iron. Phys. Rev. B 19, 2626 (1979).

    MATH  ADS  Google Scholar 

  46. Hasegawa, H. Single-site functional-integral approach to itinerant-electron ferromagnetism. J. Phys. Soc. Jpn 46, 1504–1514 (1979).

    Google Scholar 

  47. Hasegawa, H. Single-site spin fluctuation theory of itinerant-electron systems with narrow bands. J. Phys. Soc. Jpn 49, 178–188 (1980).

    Google Scholar 

  48. Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).

    ADS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  50. Kresse, G. & Joubert, D. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 59, 1758 (1999).

    ADS  Google Scholar 

  51. Kresse, G. & Joubert, D. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  52. Kresse, G. & Hafner, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 48, 13115 (1993).

    ADS  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  54. Hobbs, D., Kresse, G. & Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62, 11556 (2000).

    ADS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant no. 1904714 (S.H.L., P.G., C.M.B-C., C.N.S. and B.F.). Work at Boston College was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, under award no. DE-SC0021071 (M.H. and D.B.). O.H. acknowledges support from the Swedish Research Council (VR) program 2020-04630. M.H. and D.B. acknowledge the Boston College Linux clusters for their computational resources and support. Calculations were also performed in part using MATLAB. This research used resources of the APS, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357 (S.H.L., P.G., C.M.B-C., G.S. and B.F.). HPCAT operations are supported by DOE-NNSA’s Office of Experimental Sciences. Use of the COMPRES-GSECARS gas-loading system was supported by COMPRES under NSF Cooperative Agreement EAR-1606856 and by GSECARS through NSF grant EAR-1634415 and DOE grant DE-FG02-94ER14466. This research also used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory (S.H.L., C.M.B-C. and B.F.). We thank D. Rhiger for informing us of his dissertation research, C. Li for assistance with the pressure cells and J. A. Kornfield for use of the DSC. We also acknowledge the help from the beamline scientists at the APS (E. E. Alp, J. Zhao, B. Lavina and M. Hu) and D. Abernathy at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

S.H.L. designed and performed the experiments, analysed the data and compiled the paper. M.H. performed and analysed the calculations. P.G. and C.M.B-C. helped execute the beamline experiments at the APS. C.N.S. analysed the neutron scattering data. The remote XRD experiments were locally handled by G.S. O.H. developed and supervised the computational analyses. D.B. conceptualized and supervised the computational efforts. B.F. conceptualized and supervised the study. S.H.L., M.H., D.B. and B.F. wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to S. H. Lohaus or B. Fultz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ralf Roehlsberger, Jaime Fernandez-Baca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohaus, S.H., Heine, M., Guzman, P. et al. A thermodynamic explanation of the Invar effect. Nat. Phys. 19, 1642–1648 (2023). https://doi.org/10.1038/s41567-023-02142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02142-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing