Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-harmonic generation driven by quantum light

Abstract

High-harmonic generation (HHG) is an extreme nonlinear process in which intense pulses of light drive matter to emit high harmonics of the driving frequency, reaching the extreme ultraviolet and X-ray spectral ranges. So far, HHG has always been generated by intense laser pulses that are well described as a classical electromagnetic field. However, the role of the quantum state of light in non-perturbative interactions of intense light with matter has remained unexplored. Here we show that the defining spectral characteristics of HHG, such as the plateau and cutoff, are sensitive to the quantum state of light. While coherent and Fock light states induce the established HHG cutoff law, thermal and squeezed states substantially surpass it, extending the cutoff compared with a coherent light state of the same intensity. Shaping the quantum state of light thus enables the production of far higher harmonics. We develop the theory of extreme nonlinear optics driven by squeezed light, and more generally by arbitrary quantum states of light, introducing the quantum state of the driving field as a degree of freedom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An extended spectral cutoff for HHG driven by quantum light states.
Fig. 2: Interactions of bound electrons with quantum light.
Fig. 3: Spectra of HHG for different driving light states.
Fig. 4: The physical origin of the extended cutoffs for thermal and squeezed light states.
Fig. 5: Simulations of the high-harmonic spectra for different driving intensities.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code is available from the corresponding author upon reasonable request.

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Google Scholar 

  2. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Google Scholar 

  3. Luu, T. T. et al. Extreme-ultraviolet high-harmonic generation in liquids. Nat. Commun. 9, 3723 (2018).

    ADS  Google Scholar 

  4. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Google Scholar 

  5. Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641 (2017).

    Google Scholar 

  6. Baykusheva, D., Ahsan, M. S., Lin, N. & Wörner, H. J. Bicircular high-harmonic spectroscopy reveals dynamical symmetries of atoms and molecules. Phys. Rev. Lett. 116, 123001 (2016).

    ADS  Google Scholar 

  7. Frumker, E. et al. Probing polar molecules with high harmonic spectroscopy. Phys. Rev. Lett. 109, 233904 (2012).

    ADS  Google Scholar 

  8. Neufeld, O. et al. Ultrasensitive chiral spectroscopy by dynamical symmetry breaking in high harmonic generation. Phys. Rev. X 9, 031002 (2019).

    Google Scholar 

  9. Ayuso, D. et al. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photon. 13, 866–871 (2019).

    ADS  Google Scholar 

  10. Heinrich, T. et al. Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields. Nat. Commun. 12, 3723 (2021).

    ADS  Google Scholar 

  11. Neufeld, O. & Cohen, O. Background-free measurement of ring currents by symmetry-breaking high-harmonic spectroscopy. Phys. Rev. Lett. 123, 103202 (2019).

    ADS  Google Scholar 

  12. Luu, T. T. & Wörner, H. J. Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018).

    ADS  Google Scholar 

  13. Silva, R. E. F., Jiménez-Galán, Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photon. 13, 849–854 (2019).

    ADS  Google Scholar 

  14. Paul, P.-M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  15. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163 (2009).

    ADS  Google Scholar 

  16. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  17. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  18. Qu, Y. & Singh, S. Photon correlation effects in second harmonic generation. Opt. Commun. 90, 111–114 (1992).

    ADS  Google Scholar 

  19. Agafonov, I. N., Chekhova, M. V. & Leuchs, G. Two-color bright squeezed vacuum. Phys. Rev. A 82, 11801 (2010).

    ADS  Google Scholar 

  20. Iskhakov, T. S., Pérez, A. M., Spasibko, K. Y., Chekhova, M. V. & Leuchs, G. Superbunched bright squeezed vacuum state. Opt. Lett. 37, 1919–1921 (2012).

    ADS  Google Scholar 

  21. Jechow, A., Seefeldt, M., Kurzke, H., Heuer, A. & Menzel, R. Enhanced two-photon excited fluorescence from imaging agents using true thermal light. Nat. Photon. 7, 973–976 (2013).

    ADS  Google Scholar 

  22. Pérez, A. M. et al. Bright squeezed-vacuum source with 1.1 spatial mode. Opt. Lett. 39, 2403–2406 (2014).

    ADS  Google Scholar 

  23. Finger, M. A., Iskhakov, T. S., Joly, N. Y., Chekhova, M. V. & Russell, P. S. J. Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 115, 143602 (2015).

    ADS  Google Scholar 

  24. Sharapova, P. R. et al. Properties of bright squeezed vacuum at increasing brightness. Phys. Rev. Res. 2, 13371 (2020).

    Google Scholar 

  25. Manceau, M., Spasibko, K. Y., Leuchs, G., Filip, R. & Chekhova, M. V. Indefinite-mean pareto photon distribution from amplified quantum noise. Phys. Rev. Lett. 123, 123606 (2019).

    ADS  Google Scholar 

  26. Heckl, O. H. et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 97, 369–373 (2009).

    ADS  Google Scholar 

  27. LaGattuta, K. J. Radiation emitted by a resonantly driven hydrogen atom. Phys. Rev. A 48, 666 (1993).

    ADS  Google Scholar 

  28. Gauthey, F. I., Garraway, B. M. & Knight, P. L. High harmonic generation and periodic level crossings. Phys. Rev. A 56, 3093 (1997).

    ADS  Google Scholar 

  29. Gonoskov, I. A., Tsatrafyllis, N., Kominis, I. K. & Tzallas, P. Quantum optical signatures in strong-field laser physics: infrared photon counting in high-order-harmonic generation. Sci. Rep. 6, 32821 (2016).

    ADS  Google Scholar 

  30. Tsatrafyllis, N., Kominis, I. K., Gonoskov, I. A. & Tzallas, P. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium. Nat. Commun. 8, 15170 (2017).

    ADS  Google Scholar 

  31. Bogatskaya, A., Volkova, E. & Popov, A. Spontaneous transitions in atomic system in the presence of high-intensity laser field. Europhys. Lett. 116, 14003 (2016).

    ADS  Google Scholar 

  32. Bogatskaya, A. V., Volkova, E. A. & Popov, A. M. Spontaneous emission of atoms in a strong laser field. J. Exp. Theor. Phys. 125, 587–596 (2017).

    ADS  Google Scholar 

  33. Tsatrafyllis, N. et al. Quantum optical signatures in a strong laser pulse after interaction with semiconductors. Phys. Rev. Lett. 122, 193602 (2019).

    ADS  Google Scholar 

  34. Gombköto, Á., Varró, S., Mati, P. & Földi, P. High-order harmonic generation as induced by a quantized field: phase-space picture. Phys. Rev. A 101, 13418 (2020).

    ADS  MathSciNet  Google Scholar 

  35. Gombköto, Á., Földi, P. & Varró, S. Quantum-optical description of photon statistics and cross correlations in high-order harmonic generation. Phys. Rev. A 104, 33703 (2021).

    ADS  Google Scholar 

  36. Gorlach, A., Neufeld, O., Rivera, N., Cohen, O. & Kaminer, I. The quantum-optical nature of high harmonic generation. Nat. Commun. 11, 4598 (2020).

    ADS  Google Scholar 

  37. Varró, S. Quantum optical aspects of high-harmonic generation. Photonics. 8, 269 (2021).

    Google Scholar 

  38. Lewenstein, M. et al. Generation of optical Schrödinger cat states in intense laser–matter interactions. Nat. Phys. 17, 1104–1108 (2021).

    Google Scholar 

  39. Varró, S. Coherent and incoherent superposition of transition matrix elements of the squeezing operator. J. Phys. Conf. Ser. 2249, 12013 (2022).

    Google Scholar 

  40. Stammer, P. et al. High photon number entangled states and coherent state superposition from the extreme ultraviolet to the far infrared. Phys. Rev. Lett. 128, 123603 (2022).

    ADS  Google Scholar 

  41. Fleck, J. A., Morris, J. R. & Feit, M. D. Time-dependent propagation of high-energy laser beams through the atmosphere. Appl. Phys. 10, 129–160 (1976).

    ADS  Google Scholar 

  42. Feit, M. D., Fleck, J. A. Jr. & Steiger, A. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47, 412–433 (1982).

    ADS  MathSciNet  MATH  Google Scholar 

  43. Drummond, P. D. & Gardiner, C. W. Generalised P-representations in quantum optics. J. Phys. A 13, 2353 (1980).

    ADS  MathSciNet  Google Scholar 

  44. Kim, M. S., De Oliveira, F. A. M. & Knight, P. L. Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494–2503 (1989).

    ADS  Google Scholar 

  45. Pizzi, A., Gorlach, A., Rivera, N., Nunnenkamp, A. & Kaminer, I. Light emission from strongly driven many-body systems. Nat. Phys. https://doi.org/10.1038/s41567-022-01910-7 (2023).

    Article  Google Scholar 

  46. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

  47. Ammosov, M. V. Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field. Sov. Phys. JETP 64, 1191 (1987).

    ADS  Google Scholar 

  48. Leonhardt, U. & Paul, H. Measuring the Quantum State of Light. Progress in Quantum Electronics Vol. 19 (Cambridge Univ. Press, 1995).

  49. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  50. Spasibko, K. Y. et al. Multiphoton effects enhanced due to ultrafast photon-number fluctuations. Phys. Rev. Lett. 119, 223603 (2017).

    ADS  Google Scholar 

  51. Boyd, R. W. Nonlinear Optics (Academic, 2020).

  52. Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J. & Hommelhoff, P. Attosecond physics phenomena at nanometric tips. J. Phys. B 51, 172001 (2018).

    ADS  Google Scholar 

  53. Dombi, P. et al. Strong-field nano-optics. Rev. Mod. Phys. 92, 25003 (2020).

    MathSciNet  Google Scholar 

  54. Bula, C. et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996).

    ADS  Google Scholar 

  55. Mackenroth, F. & Di Piazza, A. Nonlinear Compton scattering in ultrashort laser pulses. Phys. Rev. A 83, 32106 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful discussions on related topics with A. Pizzi, R. Ruimy and J. Sloan. The work was supported by the Israel Science Foundation (ISF) under grant no. 830/19, by the Goldman Frontiers in Discovery Grant from the Michigan-Israel Partnership for Research and by the Helen Diller Quantum Center of Technion. The work was also partially supported by European Research Center (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 819440 TIMP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to this work. A.G., M.E.T., I.K. and N.R. developed the initial theoretical ideas. A.G. and M.E.T. performed the numerical calculations. I.K., O.C., M.K., N.R. and M.B. made significant contributions in the development of theoretical concepts and ideas. I.K. and O.C. supervised the project.

Corresponding author

Correspondence to Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–3 and derivations of all of the equations.

Source data

Source Data Figs. 3 and 5

Unprocessed versions of Figs. 3 and 5 in .fig and .mat formats.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlach, A., Tzur, M.E., Birk, M. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023). https://doi.org/10.1038/s41567-023-02127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02127-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing