Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A non-equilibrium superradiant phase transition in free space

Abstract

A class of systems exists in which dissipation, external drive and interactions compete and give rise to non-equilibrium phases that would not exist without the drive. There, phase transitions could occur without the breaking of any symmetry, yet with a local order parameter—in contrast to the Landau theory of phase transitions at equilibrium. One of the simplest driven–dissipative quantum systems consists of two-level atoms enclosed in a volume smaller than the wavelength of the atomic transition cubed, driven by a light field. The competition between collective coupling of the atoms to the driving field and their cooperative decay should lead to a transition between a phase where all the atomic dipoles are phase-locked and a phase governed by superradiant spontaneous emission. Here, we realize this model using a pencil-shaped cloud of laser-cooled atoms in free space, optically excited along its main axis, and observe the predicted phases. Our demonstration is promising in view of obtaining free-space superradiant lasers or observing new types of time crystal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-equilibrium phases in the DDM.
Fig. 2: Collective dynamics during excitation.
Fig. 3: Onset of the superradiant phase.
Fig. 4: Intensity correlations at equal time in the superradiant mode.

Data availability

All data that support the plots within this paper and the Methods of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article  ADS  Google Scholar 

  2. Parmee, C. D. & Cooper, N. R. Phases of driven two-level systems with nonlocal dissipation. Phys. Rev. A 97, 053616 (2018).

    Article  ADS  Google Scholar 

  3. Olmos, B., Yu, D. & Lesanovsky, I. Steady-state properties of a driven atomic ensemble with nonlocal dissipation. Phys. Rev. A 89, 023616 (2014).

    Article  ADS  Google Scholar 

  4. Parmee, C. D. & Ruostekoski, J. Signatures of optical phase transitions in superradiant and subradiant atomic arrays. Commun. Phys. 3, 205 (2020).

    Article  Google Scholar 

  5. Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).

    Article  ADS  Google Scholar 

  6. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  MATH  Google Scholar 

  7. Agarwal, G. S., Brown, A. C., Narducci, L. M. & Vetri, G. Collective atomic effects in resonance fluorescence. Phys. Rev. A 15, 1613–1624 (1977).

    Article  ADS  Google Scholar 

  8. Narducci, L. M., Feng, D. H., Gilmore, R. & Agarwal, G. S. Transient and steady-state behavior of collective atomic systems driven by a classical field. Phys. Rev. A 18, 1571–1576 (1978).

    Article  ADS  Google Scholar 

  9. Carmichael, H. J. & Walls, D. F. Hysteresis in the spectrum for cooperative resonance fluorescence. J. Phys. B 10, L685–L691 (1977).

    Article  ADS  Google Scholar 

  10. Walls, D. F., Drummond, P. D., Hassan, S. S. & Carmichael, H. J. Non-equilibrium phase transitions in cooperative atomic systems. Prog. Theor. Phys. Suppl. 64, 307–320 (1978).

    Article  ADS  Google Scholar 

  11. Walls, D. F. Cooperative fluorescence from N coherently driven two-level atoms. J. Phys. B 13, 2001–2009 (1980).

    Article  ADS  Google Scholar 

  12. Hannukainen, J. & Larson, J. Dissipation-driven quantum phase transitions and symmetry breaking. Phys. Rev. A 98, 042113 (2018).

    Article  ADS  Google Scholar 

  13. Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article  ADS  Google Scholar 

  14. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  15. Klinder, J., Keßler, H., Bakhtiari, M. R., Thorwart, M. & Hemmerich, A. Observation of a superradiant Mott insulator in the Dicke–Hubbard model. Phys. Rev. Lett. 115, 230403 (2015).

    Article  ADS  Google Scholar 

  16. Iemini, F. et al. Boundary time crystals. Phys. Rev. Lett. 121, 035301 (2018).

    Article  ADS  Google Scholar 

  17. Keßler, H. et al. Observation of a dissipative time crystal. Phys. Rev. Lett. 127, 043602 (2021).

    Article  ADS  Google Scholar 

  18. Meiser, D., Ye, J., Carlson, D. R. & Holland, M. J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 102, 163601 (2009).

    Article  ADS  Google Scholar 

  19. Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    Article  ADS  Google Scholar 

  20. Norcia, M. A. & Thompson, J. K. Cold-strontium laser in the superradiant crossover regime. Phys. Rev. X 6, 011025 (2016).

    Google Scholar 

  21. Laske, T., Winter, H. & Hemmerich, A. Pulse delay time statistics in a superradiant laser with calcium atoms. Phys. Rev. Lett. 123, 103601 (2019).

    Article  ADS  Google Scholar 

  22. Schäffer, S. A. et al. Lasing on a narrow transition in a cold thermal strontium ensemble. Phys. Rev. A 101, 013819 (2020).

    Article  ADS  Google Scholar 

  23. Glicenstein, A. et al. Preparation of one-dimensional chains and dense cold atomic clouds with a high numerical aperture four-lens system. Phys. Rev. A 103, 043301 (2021).

    Article  ADS  Google Scholar 

  24. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  ADS  Google Scholar 

  25. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Dover, 1987).

  26. Sutherland, R. T. & Robicheaux, F. Superradiance in inverted multilevel atomic clouds. Phys. Rev. A 95, 033839 (2017).

    Article  ADS  Google Scholar 

  27. Tanji-Suzuki, H. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 60 (eds Arimondo, E., Berman, P. & Lin, C.) pp 201–237 (Academic, 2011).

  28. Ferioli, G. et al. Laser-driven superradiant ensembles of two-level atoms near dicke regime. Phys. Rev. Lett. 127, 243602 (2021).

    Article  ADS  Google Scholar 

  29. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

  30. Gold, D. C. et al. Spatial coherence of light in collective spontaneous emission. PRX Quantum 3, 010338 (2022).

    Article  ADS  Google Scholar 

  31. Liedl, C. et al. Observation of superradiant bursts in waveguide QED. Preprint at https://arxiv.org/abs/2211.08940 (2022).

  32. Somech, O. & Shahmoon, E. Quantum entangled states of a classically radiating macroscopic spin. Preprint at https://arxiv.org/abs/2204.05455 (2022).

  33. Hassan, S., Bullough, R., Puri, R. & Lawande, S. Intensity fluctuations in a driven Dicke model. Physica A 103, 213–225 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  34. Carmichael, H. J. Analytical and numerical results for the steady state in cooperative resonance fluorescence. J. Phys. B 13, 3551–3575 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  35. Pellegrino, J. et al. Observation of suppression of light scattering induced by dipole–dipole interactions in a cold-atom ensemble. Phys. Rev. Lett. 113, 133602 (2014).

    Article  ADS  Google Scholar 

  36. Glicenstein, A. et al. Collective shift in resonant light scattering by a one-dimensional atomic chain. Phys. Rev. Lett. 124, 253602 (2020).

    Article  ADS  Google Scholar 

  37. Debnath, K., Zhang, Y. & Mølmer, K. Lasing in the superradiant crossover regime. Phys. Rev. A 98, 063837 (2018).

    Article  ADS  Google Scholar 

  38. Zhang, Y., Zhang, Y.-X. & Mølmer, K. Monte-Carlo simulations of superradiant lasing. N. J. Phys. 20, 112001 (2018).

    Article  Google Scholar 

  39. Jäger, S. B., Liu, H., Cooper, J., Nicholson, T. L. & Holland, M. J. Superradiant emission of a thermal atomic beam into an optical cavity. Phys. Rev. A 104, 033711 (2021).

    Article  ADS  Google Scholar 

  40. Parmee, C. D. & Ruostekoski, J. Bistable optical transmission through arrays of atoms in free space. Phys. Rev. A 103, 033706 (2021).

    Article  ADS  Google Scholar 

  41. Glicenstein, A., Ferioli, G., Browaeys, A. & Ferrier-Barbut, I. From superradiance to subradiance: exploring the many-body dicke ladder. Opt. Lett. 47, 1541–1544 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Robicheaux for stimulating conversations, and A.-M. Rey, J.K. Thompson, K. Moelmer, R.T. Sutherland, J. Marino, Bruno Laburthe-Tolra, D. Dreon and D. Clément for insightful discussions. We thank D. Goncalves-Romeu, L. Bombieri and D. Chang for insightful inputs on the role of the coherent dipole interactions. This project has received funding from the European Research Council (advanced grant no. 101018511, ATARAXIA), by the Agence National de la Recherche (ANR, project DEAR) and by the Région Ile-de-France in the framework of DIM SIRTEQ (projects DSHAPE and FSTOL).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and A.G. carried out the experiments and analysed the data. G.F., I.F.-B. and A.B. conducted the theoretical analysis and simulations. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Giovanni Ferioli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Shift and width of the atomic transition as a function of the saturation parameter for N ≈ 3000.

Color (white) filled diamonds: shift (width). The dashed line is the single atom power broadening \(\sqrt{1+s/4}\). Error bars on Δ and Γ are from the fit. Error bars on s = I/Isat correspond to 10% shot-to-shot fluctuations evaluated from 1000 repetitions.

Extended Data Fig. 2

Steady state values of the collective dipole \({{{\mathbf{Im}}}}[\langle {\mathbf{S}}^{{\mathbf{-}}}\rangle ]\), the magnetiztion sz〉, the effective Rabi frequency ΩEff and the superradiant emission rate γSR as a function of Ω/Γ, plotted for N = (2, 5, 10, 15) (red, blue, black, green).

Extended Data Fig. 3

Steady state values of ΩEff, and γSR as a function of N, for Ω/Γ = (1.1, 4.5, 11) (red dots, blue squares, black diamonds).

Extended Data Fig. 4 DDM and second order phase transition.

Comparison between the numerical solution of Eq. (21) for N = 20 (black line), and the analytical solution \(x=\sqrt{{\beta }^{2}-1}\) (red dashed line), showing the existence of a critical point for N → .

Source data

Source Data Fig. 2

Data plotted in Fig. 2.

Source Data Fig. 3

Data plotted in Fig. 3.

Source Data Fig. 4

Data plotted in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferioli, G., Glicenstein, A., Ferrier-Barbut, I. et al. A non-equilibrium superradiant phase transition in free space. Nat. Phys. 19, 1345–1349 (2023). https://doi.org/10.1038/s41567-023-02064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02064-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing