Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectral engineering of cavity-protected polaritons in an atomic ensemble

Abstract

Multiple quantum emitters coupled to a single cavity mode appear in many situations, including quantum technologies and polaritonic chemistry. The ideal case of identical emitters is modelled in terms of symmetric states, and understood in terms of polaritons. In the practically relevant case of an inhomogeneous frequency distribution, this simple picture breaks down and new features emerge. Here we observe the transition from a disordered regime to a polaritonic one with only two resonances, using the high degree of control in a strongly coupled cold-atom system where the ratio between coupling strength and frequency inhomogeneities can be tuned. The polaritons are much narrower than the frequency distribution, as predicted in the context of cavity protection. We find that the concentration of photonic weight of the coupled light–matter states is a key parameter for this transition and demonstrate that a simple parameter based on the statistics of transmission count spectra provides an experimental proxy for this theoretical quantity. Moreover, we realize a dynamically modulated Tavis–Cummings model to produce a comb of narrow polariton resonances protected from disorder, with potential applications to quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup of the cold-atom cavity interface with tunable inhomogeneous frequency distribution.
Fig. 2: Cavity protection effect.
Fig. 3: Transition from the unprotected to protected regime.
Fig. 4: Modulation of polariton eigenfrequencies.

Similar content being viewed by others

Code availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.7308847.

References

  1. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. 1998, 127 (1998).

    Google Scholar 

  2. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  3. Solnyshkov, D. D. et al. Microcavity polaritons for topological photonics [Invited]. Opt. Mater. Express 11, 1119–1142 (2021).

    Google Scholar 

  4. Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    Google Scholar 

  5. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    MathSciNet  ADS  Google Scholar 

  6. Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    Google Scholar 

  7. Bussières, F. et al. Prospective applications of optical quantum memories. J. Mod. Opt. 60, 1519–1537 (2013).

    MathSciNet  MATH  ADS  Google Scholar 

  8. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS  Google Scholar 

  9. Zhong, T., Kindem, J. M., Rochman, J. & Faraon, A. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles. Nat. Commun. 8, 14107 (2017).

    ADS  Google Scholar 

  10. Haas, F., Volz, J., Gehr, R., Reichel, J. & Esteve, J. Entangled states of more than 40 atoms in an optical fiber cavity. Science 344, 180–183 (2014).

    ADS  Google Scholar 

  11. McConnell, R., Zhang, H., Hu, J., Ćuk, S. & Vuletić, V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015).

    ADS  Google Scholar 

  12. Welte, S., Hacker, B., Daiss, S., Ritter, S. & Rempe, G. Cavity carving of atomic Bell states. Phys. Rev. Lett. 118, 210503 (2017).

    ADS  Google Scholar 

  13. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    ADS  Google Scholar 

  14. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    ADS  Google Scholar 

  15. Ma, J., Wang, X., Sun, C. P. & Nori, F. Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011).

    MathSciNet  ADS  Google Scholar 

  16. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    MATH  ADS  Google Scholar 

  17. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    MathSciNet  ADS  Google Scholar 

  18. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    ADS  Google Scholar 

  19. Kroeze, R. M., Guo, Y., Vaidya, V. D., Keeling, J. & Lev, B. L. Spinor self-ordering of a quantum gas in a cavity. Phys. Rev. Lett. 121, 163601 (2018).

    ADS  Google Scholar 

  20. Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).

    ADS  Google Scholar 

  21. Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    ADS  Google Scholar 

  22. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Google Scholar 

  23. Tavis, M. & Cummings, F. W. Exact solution for an N-molecule—radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    ADS  Google Scholar 

  24. Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015).

    ADS  Google Scholar 

  25. Schachenmayer, J., Genes, C., Tignone, E. & Pupillo, G. Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114, 196403 (2015).

    ADS  Google Scholar 

  26. Gonzalez-Ballestero, C., Feist, J., Gonzalo Badía, E., Moreno, E. & Garcia-Vidal, F. J. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117, 156402 (2016).

    ADS  Google Scholar 

  27. Botzung, T. et al. Dark state semilocalization of quantum emitters in a cavity. Phys. Rev. B 102, 144202 (2020).

    ADS  Google Scholar 

  28. Chávez, N. C., Mattiotti, F., Méndez-Bermúdez, J. A., Borgonovi, F. & Celardo, G. L. Disorder-enhanced and disorder-independent transport with long-range hopping: application to molecular chains in optical cavities. Phys. Rev. Lett. 126, 153201 (2021).

    ADS  Google Scholar 

  29. Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys. 70, 1–153 (2021).

    ADS  Google Scholar 

  30. Houdré, R., Stanley, R. P. & Ilegems, M. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53, 2711–2715 (1996).

    ADS  Google Scholar 

  31. Kurucz, Z., Wesenberg, J. H. & Mølmer, K. Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity. Phys. Rev. A 83, 053852 (2011).

    ADS  Google Scholar 

  32. Diniz, I. et al. Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011).

    ADS  Google Scholar 

  33. Putz, S. et al. Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED. Nat. Phys. 10, 720–724 (2014).

    Google Scholar 

  34. Breeze, J. D., Salvadori, E., Sathian, J., Alford, N. M. & Kay, C. W. M. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states. npj Quantum Inf. 3, 40 (2017).

    ADS  Google Scholar 

  35. Lukin, D. M. et al. Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. npj Quantum Inf. 6, 80 (2020).

    ADS  Google Scholar 

  36. Craiciu, I. et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks. Optica 8, 114–121 (2021).

    ADS  Google Scholar 

  37. Mishra, S. D., Trivedi, R., Safavi-Naeini, A. H. & Vučković, J. Control design for inhomogeneous-broadening compensation in single-photon transducers. Phys. Rev. Appl. 16, 044025 (2021).

    ADS  Google Scholar 

  38. White, A. D., Trivedi, R., Narayanan, K. & Vučković, J. Enhancing superradiance in spectrally inhomogeneous cavity QED systems with dynamic modulation. ACS Photon. 9, 2467–2472 (2022).

    Google Scholar 

  39. Hunger, D. et al. A fiber Fabry–Pérot cavity with high finesse. New J. Phys. 12, 065038 (2010).

    ADS  Google Scholar 

  40. Garcia, S., Ferri, F., Ott, K., Reichel, J. & Long, R. Dual-wavelength fiber Fabry-Pérot cavities with engineered birefringence. Opt. Express 26, 22249–22263 (2018).

    Google Scholar 

  41. Garcia, S., Ferri, F., Reichel, J. & Long, R. Overlapping two standing waves in a microcavity for a multi-atom photon interface. Opt. Express 28, 15515–15528 (2020).

    Google Scholar 

  42. Ferri, F., Garcia, S., Baghdad, M., Reichel, J. & Long, R. Mapping optical standing-waves of an open-access Fabry–Pérot cavity with a tapered fiber. Rev. Sci. Instrum. 91, 033104 (2020).

    ADS  Google Scholar 

  43. Brantut, J. P. et al. Light-shift tomography in an optical-dipole trap for neutral atoms. Phys. Rev. A 78, 031401 (2008).

    ADS  Google Scholar 

  44. Dubail, J., Botzung, T., Schachenmayer, J., Pupillo, G. & Hagenmüller, D. Large random arrowhead matrices: multifractality, semilocalization, and protected transport in disordered quantum spins coupled to a cavity. Phys. Rev. A 105, 023714 (2022).

    MathSciNet  ADS  Google Scholar 

  45. Debnath, K., Zhang, Y. & Mølmer, K. Collective dynamics of inhomogeneously broadened emitters coupled to an optical cavity with narrow linewidth. Phys. Rev. A 100, 053821 (2019).

    ADS  Google Scholar 

  46. Clark, L. W. et al. Interacting Floquet polaritons. Nature 571, 532–536 (2019).

    Google Scholar 

  47. Shlesinger, I. et al. Time-frequency encoded single-photon generation and broadband single-photon storage with a tunable subradiant state. Optica 8, 95–105 (2021).

    ADS  Google Scholar 

  48. Piñeiro Orioli, A., Thompson, J. K. & Rey, A. M. Emergent dark states from superradiant dynamics in multilevel atoms in a cavity. Phys. Rev. X 12, 011054 (2022).

    Google Scholar 

  49. Lei, M. et al. Many-body cavity quantum electrodynamics with driven inhomogeneous emitters. Preprint at https://arxiv.org/abs/2208.04345 (2022).

  50. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  Google Scholar 

  51. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  Google Scholar 

  52. Deist, E., Gerber, J. A., Lu, Y.-H., Zeiher, J. & Stamper-Kurn, D. M. Superresolution microscopy of optical fields using tweezer-trapped single atoms. Phys. Rev. Lett. 128, 083201 (2022).

    ADS  Google Scholar 

  53. Sauerwein, N. et al. Engineering random spin models with atoms in a high-finesse cavity. Preprint at https://arxiv.org/abs/2208.09421 (2022).

  54. Ferri, F. et al. An optical elevator for precise delivery of cold atoms using an acousto-optical deflector. New J. Phys. 24, 043013 (2022).

    ADS  Google Scholar 

  55. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Pupillo and J. Schachenmayer for discussion within the ANR project CLIMAQS. This project has received funding from Agence Nationale de la Recherche (ANR) (SAROCEMA project, ANR-14-CE32-0002) and European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via grant agreement no. 671133 (EQUEMI project). It has been supported by Region Ile-de-France in the framework of DIM SIRTEQ. S.S. acknowledges funding from the European Union under the Marie Skłodowska-Curie Individual Fellowship Programme H2020-MSCA-IF-2014 (project no. 658253).

Author information

Authors and Affiliations

Authors

Contributions

M.B., F.F. and R.L. built the experimental setup. M.B., P.-A.B., S.S., F.F. and R.L. performed the measurements and analysed the data. P.-A.B., S.S., J.R. and R.L. interpreted the results and wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Romain Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Zhenjie Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simulated atomic frequency distribution for different trap depths.

For each trap depth U0, the temperature T used in the simulation corresponds to the typical experimental value based on time-of-flight measurements. When U0 increases, the mean frequency of the distribution decreases linearly – as expected with red-detuned off-resonant light – and the width Δω of the distribution increases. At low trap depth U0 = 310 ± 10 μK, the distribution has mainly one lobe, corresponding to the \(\left\vert F=2\right\rangle \to \left\vert {F}^{{\prime} }=3\right\rangle\) transition. For larger trap depths, two-photon couplings at 1559 nm mix the excited state hyperfine levels and two extra lobes appear in the distributions, at lower frequencies, corresponding roughly to transitions \(\left\vert F=2\right\rangle \to \left\vert {F}^{{\prime} }=2\right\rangle\) and \(\left\vert F=2\right\rangle \to \left\vert {F}^{{\prime} }=1\right\rangle\). This illustrates the tunability of the inhomogeneous distribution with the intensity of the trapping field.

Extended Data Fig. 2 Single-shot experimental spectrum.

As we probe the coupled system in the low excitation regime, we collect few photons in transmission and the spectrum is discretized (orange dots). For each spectrum, we compute the fraction Fout of photons (identified with black triangles) that lies outside of a frequency window Δf/2π (green colored area), centered on each peak distribution (red and blue dashed lines).

Extended Data Fig. 3 Robustness of Fout with respect to the size of the exclusion window.

Here, we show Fout for several values of Δf/2π chosen to define the exclusion window, together with the simulated sum of the two highest PW, SPW, as in Fig. 3 of the main text (red dots). The result is rather robust: when Δf/2π decreases, the shape of Fout remains the same and is shifted upwards as expected. Data are presented as mean values ± s.e.m. obtained with an average of 55 spectra per point.

Supplementary information

Supplementary Information

Supplementary sections I–III, figs. 1 and 2 and tables I and II.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdad, M., Bourdel, PA., Schwartz, S. et al. Spectral engineering of cavity-protected polaritons in an atomic ensemble. Nat. Phys. 19, 1104–1109 (2023). https://doi.org/10.1038/s41567-023-02035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02035-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing