Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Verification of the area law of mutual information in a quantum field simulator

Abstract

The theoretical understanding of scaling laws of entropies and mutual information has led to substantial advances in the study of correlated states of matter, quantum field theory and gravity. Experimentally measuring von Neumann entropy in quantum many-body systems is challenging, as it requires complete knowledge of the density matrix, which normally requires the implementation of full state reconstruction techniques. Here we measure the von Neumann entropy of spatially extended subsystems in an ultracold atom simulator of one-dimensional quantum field theories. We experimentally verify one of the fundamental properties of equilibrium states of gapped quantum many-body systems—the area law of quantum mutual information. We also study the dependence of mutual information on temperature and on the separation between the subsystems. Our work represents a step towards employing ultracold atom simulators to probe entanglement in quantum field theories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental protocol.
Fig. 2: Area law of MI and volume law of vN entropy.
Fig. 3: Shared information content between two spatially separated subsystems.
Fig. 4: Temperature dependence of MI and vN entropy.

Similar content being viewed by others

Data availability

The experimental raw data containing all the information required to extract and calculate the results presented in Figs. 24 and Extended Data Fig. 1 are available in ref. 41. Sample code for calculating absorption images from raw data is also available there. All other data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  5. Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    Article  ADS  Google Scholar 

  6. Callan, C. & Wilczek, F. On geometric entropy. Phys. Lett. B 333, 55–61 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  7. Holzhey, C., Larsen, F. & Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Srednicki, M. Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Calabrese, P. & Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. Theory Exp. 2004, 06002 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. Calabrese, P. & Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A Math. Theor. 42, 504005 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Polchinski, J. in New Frontiers in Fields And Strings (eds Polchinski, J. et al.) 353–397 (World Scientific, 2017); https://doi.org/10.1142/9789813149441_0006

  12. Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012).

    Article  ADS  Google Scholar 

  14. Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Wolf, M. M., Verstraete, F., Hastings, M. B. & Cirac, J. I. Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Luo, L., Clancy, B., Joseph, J., Kinast, J. & Thomas, J. E. Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev. Lett. 98, 080402 (2007).

    Article  ADS  Google Scholar 

  17. Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article  ADS  Google Scholar 

  18. Omran, A. et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 115, 263001 (2015).

    Article  ADS  Google Scholar 

  19. Cocchi, E. et al. Measuring entropy and short-range correlations in the two-dimensional Hubbard model. Phys. Rev. X 7, 031025 (2017).

    Google Scholar 

  20. Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Article  ADS  Google Scholar 

  21. Evrard, B., Qu, A., Dalibard, J. & Gerbier, F. Observation of fragmentation of a spinor Bose-Einstein condensate. Science 373, 1340–1343 (2021).

    Article  ADS  Google Scholar 

  22. Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749–4752 (2000).

    Article  ADS  Google Scholar 

  23. Tajik, M. et al. Designing arbitrary one-dimensional potentials on an atom chip. Opt. Exp. 27, 33474–33487 (2019).

    Article  Google Scholar 

  24. Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57–62 (2005).

    Article  Google Scholar 

  25. Rauer, B. et al. Cooling of a one-dimensional Bose gas. Phys. Rev. Lett. 116, 030402 (2016).

    Article  ADS  Google Scholar 

  26. Schweigler, T. et al. Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545, 323–326 (2017).

    Article  Google Scholar 

  27. Gluza, M. et al. Quantum read-out for cold atomic quantum simulators. Commun. Phys. 3, 12 (2020).

    Article  Google Scholar 

  28. Schweigler, T. et al. Decay and recurrence of non-Gaussian correlations in a quantum many-body system. Nat. Phys. 17, 559–563 (2021).

    Article  Google Scholar 

  29. Serafini, A. Quantum Continuous Variables: a Primer of Theoretical Methods (CRC Press, 2017).

    Book  MATH  Google Scholar 

  30. Eisert, J. & Wolf, M. M. in Quantum Information with Continuous Variables of Atoms and Light (eds Cerf, N. J. et al.) 23–42 (World Scientific, 2007); https://doi.org/10.1142/9781860948169_0002

  31. Katsinis, D. & Pastras, G. An inverse mass expansion for the mutual information in free scalar qft at finite temperature. J. High Energy Phys. 2020, 91 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukuljan, I., Sotiriadis, S. & Takacs, G. Correlation functions of the quantum sine-Gordon model in and out of equilibrium. Phys. Rev. Lett. 121, 110402 (2018).

    Article  ADS  Google Scholar 

  33. Emonts, P. & Kukuljan, I. Reduced density matrix and entanglement of interacting quantum field theories with Hamiltonian truncation. Phys. Rev. Res 4, 033039 (2022).

    Article  Google Scholar 

  34. Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).

    MathSciNet  MATH  Google Scholar 

  35. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Article  ADS  Google Scholar 

  36. Rauer, B. et al. Recurrences in an isolated quantum many-body system. Science 360, 307–310 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  37. Berrada, T. et al. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates. Nat. Commun. 4, 2077 (2013).

    Article  ADS  Google Scholar 

  38. Schweigler, T. Correlations and Dynamics of Tunnel-Coupled One-Dimensional Bose Gases. PhD thesis, Techniche Universität Wien (2019); https://doi.org/10.34726/hss.2019.63111

  39. van Kempen, E. G., Kokkelmans, S. J., Heinzen, D. J. & Verhaar, B. J. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002).

    Article  ADS  Google Scholar 

  40. Le Bellac, M. Thermal Field Theory. Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, 1996); https://doi.org/10.1017/CBO9780511721700

  41. Tajik, M. et al. Raw data to ‘Experimental verification of the area law of mutual information in quantum field theory’. Zenodo https://doi.org/10.5281/zenodo.6851336 (2022).

Download references

Acknowledgements

We thank M. Gluza, J. Eisert, I. Cirac, I. Mazets and S. Erne for helpful discussions. This work is supported by the DFG/FWF Research Unit FOR 2724 ‘Thermal machines in the quantum world’, the FQXi programme on ‘Information as fuel’, and DFG/FWF CRC 1225, ‘Isolated quantum systems and universality in extreme conditions (ISOQUANT)’. The Flatiron Institute is a division of the Simons Foundation. E.D. acknowledges support from ARO grant no. W911NF-20-1-0163. The work of I.K. was supported by the Max-Planck-Harvard Research Center for Quantum Optics (MPHQ). F.C., F.M. and J. Sabino acknowledge support from the Austrian Science Fund (FWF) in the framework of the Doctoral School on Complex Quantum Systems (CoQuS). J. Sabino acknowledges support by the Fundação para a Ciência e Tecnologia, Portugal (PD/BD/128641/2017). T.S. acknowledges support from the Max Kade Foundation through a postdoctoral fellowship. B.R. acknowledges support by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 888707. D.S. is partially supported by AFOSR (grant no. FA9550-21-1-0236) and NSF (grant no. OAC-2118310). S.S. acknowledges support by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 101030988 and by the Slovenian Research Agency (ARRS) under a QTE grant (no. N1-0109).

Author information

Authors and Affiliations

Authors

Contributions

M.T. and B.R. performed the experiment with contributions by T.S., F.C., S.-C.J., J. Sabino, F.M. and P.S. M.T. analysed the experimental data. I.K., S.S. and M.T. provided the theoretical methodology and calculations, with helpful suggestions from D.S. J. Schmiedmayer and E.D. provided scientific guidance on experimental and theoretical questions. J. Schmiedmayer conceived the experiment. All authors contributed to the interpretation of the data and to the writing of the manuscript.

Corresponding authors

Correspondence to Mohammadamin Tajik or Jörg Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional results for area law of MI and volume law of vN entropy.

a, Experimental results for I(A: AC), SA, and \({S}_{{A}^{{{{\rm{C}}}}}}\), calculated based on N = 7 modes (left) and N = 8 modes (right) (see the caption of Fig. 2 for detailed explanation). The extracted parameters including their 95% confidence intervals in parenthesis are given above. b, Close-up of the measured MI.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, discussion of the experimental results and Table 1.

Source data

Source Data Fig. 2

Numerical values of the plotted quantities.

Source Data Fig. 3

Numerical values of the plotted quantities.

Source Data Fig. 4

Numerical values of the plotted quantities.

Source Data Extended Data Fig. 1

Numerical values of the plotted quantities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, M., Kukuljan, I., Sotiriadis, S. et al. Verification of the area law of mutual information in a quantum field simulator. Nat. Phys. 19, 1022–1026 (2023). https://doi.org/10.1038/s41567-023-02027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02027-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing