Abstract
Soft particulate gels are composed of a small amount of particulate matter dispersed in a continuous fluid phase. The solid components assemble to form a porous matrix, providing rigidity and control of the mechanical response, despite being the minority constituent. The rheological response and gel elasticity are direct functions of the particle volume fraction. However, the diverse range of different functional dependencies reported experimentally has challenged efforts to identify general scaling laws. Here we reveal a hidden hierarchical organization of fractal elements that controls the viscoelastic spectrum, and which is associated with the spatial heterogeneity of the solid matrix topology. The fractal elements form the foundations of a viscoelastic master curve, constructed using large-scale three-dimensional (3D) microscopic simulations of model gels, which can be described by a recursive rheological ladder model over a range of particle volume fractions and gelation rates. The hierarchy of the fractal elements provides the missing general framework required to predict the gel elasticity and the linear viscoelastic response of these complex materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Fractional rheology-informed neural networks for data-driven identification of viscoelastic constitutive models
Rheologica Acta Open Access 26 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
We have deposited the manuscript data in a public repository (https://doi.org/10.5281/zenodo.7580589). Additional data supporting the manuscript data are available from the authors upon request.
Code availability
The codes used in this study are available from the corresponding author upon reasonable request.
References
Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1954).
de Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
Stauffer, D., Coniglio, A. & Adam, M. in Gelation and Critical Phenomena (ed Dušek, K.) 103–158 (Springer, 1982).
Daoud, M. Viscoelasticity near the sol-gel transition. Macromolecules 33, 3019–3022 (2000).
Winter, H. H. & Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 30, 367–382 (1986).
Muthukumar, M. Screening effect on viscoelasticity near the gel point. Macromolecules 22, 4656–4658 (1989).
Martin, J. E., Adolf, D. & Wilcoxon, J. P. Viscoelasticity of near-critical gels. Phys. Rev. Lett. 61, 2620–2623 (1988).
Adolf, D., Martin, J. E. & Wilcoxon, J. P. Evolution of structure and viscoelasticity in an epoxy near the sol-gel transition. Macromolecules 23, 527–531 (1990).
Witten, T. A. & Pincus, P. Structured Fluids (Oxford Univ. Press, 2004).
Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).
Lu, P. J. et al. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).
Petekidis, G. & Wagner, N. J. in Rheology of Colloidal Glasses and Gels (eds Wagner, N. J. & Mewis, J.) 173–226 (Cambridge Univ. Press, 2021).
Royall, C. P., Faers, M. A., Fussell, S. L. & Hallett, J. E. Real space analysis of colloidal gels: triumphs, challenges and future directions. J. Condens. Matter Phys. 33, 453002 (2021).
Zhang, S. et al. Correlated rigidity percolation and colloidal gels. Phys. Rev. Lett. 123, 058001 (2019).
Whitaker, K. A. et al. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat. Commun. 10, 2237 (2019).
Tsurusawa, H., Leocmach, M., Russo, J. & Tanaka, H. Direct link between mechanical stability in gels and percolation of isostatic particles. Sci. Adv. 5, eaav6090 (2019).
Dinsmore, A. D. & Weitz, D. A. Direct imaging of three-dimensional structure and topology of colloidal gels. J. Phys. Condens. Matter 14, 7581–7597 (2002).
Duri, A. & Cipelletti, L. Length scale dependence of dynamical heterogeneity in a colloidal fractal gel. Europhys. Lett. 76, 972–978 (2006).
Szakasits, M. E., Zhang, W. & Solomon, M. J. Dynamics of fractal cluster gels with embedded active colloids. Phys. Rev. Lett. 119, 058001 (2017).
Negi, A. S., Redmon, C. G., Ramakrishnan, S. & Osuji, C. O. Viscoelasticity of a colloidal gel during dynamical arrest: evolution through the critical gel and comparison with a soft colloidal glass. J. Rheol. 58, 1557–1579 (2014).
Aime, S., Cipelletti, L. & Ramos, L. Power law viscoelasticity of a fractal colloidal gel. J. Rheol. 62, 1429–1441 (2018).
Keshavarz, B. et al. Time-connectivity superposition and the gel/glass duality of weak colloidal gels. Proc. Natl Acad. Sci. USA 118, e2022339118 (2021).
Shih, W.-H., Shih, W. Y., Kim, S.-I., Liu, J. & Aksay, I. A. Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 42, 4772–4779 (1990).
Buscall, R., Mills, P. D. A., Goodwin, J. W. & Lawson, D. W. Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J. Chem. Soc. Faraday Trans. 1 84, 4249–4260 (1988).
Grant, M. C. & Russel, W. B. Volume-fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys. Rev. E 47, 2606–2614 (1993).
Piau, J.-M., Dorget, M., Palierne, J.-F. & Pouchelon, A. Shear elasticity and yield stress of silica-silicone physical gels: fractal approach. J. Rheol. 43, 305–314 (1999).
Trappe, V. & Weitz, D. A. Scaling of the viscoelasticity of weakly attractive particles. Phys. Rev. Lett. 85, 449–452 (2000).
Prasad, V. et al. Rideal lecture universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss. 123, 1–12 (2003).
Wyss, H. M., Deliormanli, A. M., Tervoort, E. & Gauckler, L. J. Influence of microstructure on the rheological behavior of dense particle gels. AIChE J. 51, 134–141 (2005).
Yanez, J. A., Shikata, T., Lange, F. F. & Pearson, D. S. Shear modulus and yield stress measurements of attractive alumina particle networks in aqueous slurries. J. Am. Ceram. Soc. 79, 2917–2917 (1996).
Ramakrishnan, S., Chen, Y.-L., Schweizer, K. S. & Zukoski, C. F. Elasticity and clustering in concentrated depletion gels. Phys. Rev. E 70, 040401 (2004).
Mellema, M., van Opheusden, J. H. J. & van Vliet, T. Categorization of rheological scaling models for particle gels applied to casein gels. J. Rheol. 46, 11–29 (2002).
Romer, S., Bissig, H., Schurtenberger, P. & Scheffold, F. Rheology and internal dynamics of colloidal gels from the dilute to the concentrated regime. Europhys. Lett. 108, 48006 (2014).
Colombo, J. & Del Gado, E. Self-assembly and cooperative dynamics of a model colloidal gel network. Soft Matter 10, 4003–4015 (2014).
Colombo, J. & Del Gado, E. Stress localization, stiffening and yielding in a model colloidal gel. J. Rheol. 58, 1089–1116 (2014).
Bouzid, M., Colombo, J., Barbosa, L. V. & Del Gado, E. Elastically driven intermittent microscopic dynamics in soft solids. Nat. Commun. 8, 15846 (2017).
Bouzid, M. et al. Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. J. Rheol. 62, 1037–1050 (2018).
Bantawa, M., Fontaine-Seiler, W. A., Olmsted, P. D. & Del Gado, E. Microscopic interactions and emerging elasticity in model soft particulate gels. J. Phys. Condens. Matter 33, 414001 (2021).
Geri, M. et al. Time-resolved mechanical spectroscopy of soft materials via optimally windowed chirps. Phys. Rev. X 8, 041042 (2018).
Helgeson, M. E. et al. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels. Soft Matter 10, 3122–3133 (2014).
Rao, A., Divoux, T., McKinley, G. H. & Hart, A. J. Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels. Soft Matter 15, 4401–4412 (2019).
Huang, S.-T., Yang, C.-H., Lin, P.-J., Su, C. Y. & Hua, C.-C. Multiscale structural and rheological features of colloidal low-methoxyl pectin solutions and calcium-induced sol-gel transition. Phys. Chem. Chem. Phys. 23, 19269–19279 (2021).
Schiessel, H. & Blumen, A. Hierarchical analogues to fractional relaxation equations. J. Phys. A Math. Theor. 26, 5057–5069 (1993).
Schiessel, H. & Blumen, A. Mesoscopic pictures of the sol-gel transition: ladder models and fractal networks. Macromolecules 28, 4013–4019 (1995).
Jaishankar, A. & McKinley, G. H. Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, 20120284 (2013).
De Gennes, P. G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60, 5030–5042 (1974).
Stauffer, D. Gelation in concentrated critically branched polymer solutions. Percolation scaling theory of intramolecular bond cycles. J. Chem. Soc. Faraday Trans. 2 72, 1354–1364 (1976).
Stauffer, D. & Aharony, A. Introduction to Percolation Theory (CRC Press, 2018).
Colombo, J., Widmer-Cooper, A. & Del Gado, E. Microscopic picture of cooperative processes in restructuring gel networks. Phys. Rev. Lett. 110, 198301 (2013).
Bouzid, M. & Del Gado, E. Network topology in soft gels: hardening and softening materials. Langmuir 34, 773–781 (2018).
Shivers, J., Arzash, S., Sharma, A. & MacKintosh, F. C. Scaling theory for mechanical critical behavior in fiber networks. Phys. Rev. Lett. 122, 188003 (2019).
Burla, F., Mulla, Y., Vos, B. E., Aufderhorst-Roberts, A. & Koenderink, G. H. From mechanical resilience to active material properties in biopolymer networks. Nat. Rev. Phys. 1, 249–263 (2019).
Rocklin, D. Z., Hsiao, L., Szakasits, M., Solomon, M. J. & Mao, X. Elasticity of colloidal gels: structural heterogeneity, floppy modes and rigidity. Soft Matter 17, 6929–6934 (2021).
Coniglio, A. Thermal phase transition of the dilute s-state Potts and n-vector models at the percolation threshold. Phys. Rev. Lett. 46, 250–253 (1981).
Lin, M. Y. et al. Universality of fractal aggregates as probed by light scattering. Proc. R. Soc. A Math. Phys. Eng. Sci. 423, 71–87 (1989).
Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. Phys. Rev. Lett. 54, 1416–1419 (1985).
Kantor, Y. & Webman, I. Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984).
Grant, M. C. & Russel, W. B. Volume-fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys. Rev. E 47, 2606–2614 (1993).
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. Jamming, force chains and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998).
Nampoothiri, J. N. et al. Emergent elasticity in amorphous solids. Phys. Rev. Lett. 125, 118002 (2020).
Hsiao, L. C., Newman, R. S., Glotzer, S. C. & Solomon, M. J. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc. Natl Acad. Sci. USA 109, 16029–16034 (2012).
Lindstrom, S. B., Kodger, T. E., Sprakel, J. & Weitz, D. A. Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter 8, 3657–3664 (2012).
van Doorn, J. M., Verweij, J. E., Sprakel, J. & van der Gucht, J. Strand plasticity governs fatigue in colloidal gels. Phys. Rev. Lett. 120, 208005 (2018).
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2015).
Dibble, C. J., Kogan, M. & Solomon, M. J. Structural origins of dynamical heterogeneity in colloidal gels. Phys. Rev. E 77, 050401 (2008).
Laurati, M. et al. Structure, dynamics and rheology of colloid-polymer mixtures: from liquids to gels. J. Chem. Phys. 130, 134907 (2009).
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Acknowledgements
We acknowledge support from the National Science Foundation, under grants nos. NSF DMR-2026842 (M. Bantawa and E.D.G.) and NSF DMREF CBET—2118962 (E.D.G.). This research was supported in part by the National Science Foundation under grant no. NSF PHY-1748958 through the KITP programme on the Physics of Dense Suspensions.
Author information
Authors and Affiliations
Contributions
M. Bantawa and B.K. contributed equally to this work. M. Bantawa performed simulations. B.K. developed the viscoelastic master curve and the rheological ladder model. All authors analysed data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–8, discussions (sections 1–12) and references.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bantawa, M., Keshavarz, B., Geri, M. et al. The hidden hierarchical nature of soft particulate gels. Nat. Phys. 19, 1178–1184 (2023). https://doi.org/10.1038/s41567-023-01988-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-023-01988-7