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Cell cycle dynamics control fluidity of the 
developing mouse neuroepithelium

Laura Bocanegra-Moreno1, Amrita Singh1, Edouard Hannezo    1, 
Marcin Zagorski    2   & Anna Kicheva    1 

As developing tissues grow in size and undergo morphogenetic changes, 
their material properties may be altered. Such changes result from tension 
dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular 
mechanisms controlling the physical state of growing tissues are unclear. We 
found that at early developmental stages, the epithelium in the developing 
mouse spinal cord maintains both high junctional tension and high fluidity. 
This is achieved via a mechanism in which interkinetic nuclear movements 
generate cell area dynamics that drive extensive cell rearrangements. Over 
time, the cell proliferation rate declines, effectively solidifying the tissue. 
Thus, unlike well-studied jamming transitions, the solidification uncovered 
here resembles a glass transition that depends on the dynamical stresses 
generated by proliferation and differentiation. Our finding that the fluidity 
of developing epithelia is linked to interkinetic nuclear movements and the 
dynamics of growth is likely to be relevant to multiple developing tissues.

Cells within developing tissues reorganize at the same time as tissue 
growth takes place. The extent and dynamics of cell rearrangements 
can substantially change during tissue development1,2, reflecting 
solid–fluid transitions in the physical properties of tissues. In most 
cases, these transitions have been proposed to result from alterations 
in cell density, cell motility, internal myosin- and/or cadherin-mediated 
adhesion forces at cell junctions, or external mechanical forces2–8. Cell 
rearrangements have also been shown in theory and in some experi-
mental situations to depend on active stresses within tissues, such as 
the ones generated by cell division9–12. Yet, in many cases, the dynamics 
of cell rearrangements and the factors that control them are poorly 
understood.

The spinal cord of amniotes develops from a flat epithelial sheet—
the neural plate—that folds to form a closed neural tube13. These 
morphogenetic changes are accompanied by cell intercalations and 
convergent extension, which are mediated by planar cell polarity and 
actomyosin-dependent contractility of the apical adherens junctions, 
as well as basolateral protrusive activity14,15. However, whether these are 
the only factors contributing to cell rearrangements in the neuroepi-
thelium is an open question. Furthermore, the quantitative dynamics 
of cell rearrangements during development remain unclear. Here we 

use highly resolved clonal analysis to measure the rate of cell rear-
rangements in the mouse neuroepithelium over time, thus inferring 
the long-term rheological properties of the tissue. We further propose 
a theoretical framework for how active stresses generated during tissue 
growth contribute to cell rearrangements.

Cell rearrangements decline over time
To quantitatively measure cell rearrangements in the neural tube 
without the risk of perturbing the native mechanical environment of 
embryo growth in utero, we used clonal labelling to track how the posi-
tions of daughter cells that are initially adjacent change with respect to 
each other over time (Fig. 1a). A key aspect to achieve reliable tracing 
is the sparseness of labelling. Mosaic analysis with double markers 
(MADM)16,17 is a two-colour labelling system known for its sparseness. 
Therefore, we used Sox2–CreERT2-induced MADM recombination  
(Fig. 1a and Supplementary Fig. 1a,b) to label cells with very low proba-
bility—we detected between one and five clones per spinal cord (Fig. 1c).

We induced MADM clonal labelling by injecting pregnant mothers 
with tamoxifen at embryonic days E8.5, E9.5 and E10.5, and harvested 
the embryos 24 h later. The cytosolic fluorescent reporters allow the 
labelled cells to be detected at the apical surface of the epithelium  
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the actual apical-area cell cycle dynamics in the tissue, we measured 
the distribution of cell areas as a function of cell cycle phase at E8.5 and 
E10.5. To do this, we used short (20–30 min) EdU pulse labelling to 
mark the S-phase nuclei, 2 h EdU pulse to mark the G2 nuclei and phos-
pho–histone 3 staining to mark cells undergoing mitosis (Fig. 2a and 
Methods). We combined EdU/pH3 immunostaining with sparse mosaic 
cytosolic tdTomato labelling to identify individual cell bodies, and 
with ZO1 immunostaining to measure the apical surface areas that 
correspond to specific nuclei. This analysis confirmed that the position 
of the nucleus relative to the apical surface changes with the cell cycle 
at both E8.5 and E10.5, reflecting the fact that the nuclei undergo IKNM 
(Fig. 2b). Furthermore, consistent with the model, we found that cells 

(Fig. 1b,d). In addition, immunostaining for the tight junction marker 
ZO1 allows us to segment individual cells and precisely determine the 
number and neighbour relationships of the labelled cells.

We focused our analysis on clones in the dorsal (pD) and inter-
mediate (pI) progenitor domains, which span more than half the D–V 
length of the neural tube (Fig. 1b). The mean clone sizes of MADM 
clones decline from 4.1 ± 0.3 cells per clone at E8.5 to 2.1 ± 0.1 cells per 
clone at E10.5 (Supplementary Fig. 1c). This reflects a twofold decline 
in the tissue growth rate (from 0.087 ± 0.009 h−1 to 0.046 ± 0.004 h−1), 
which is consistent with previous estimates18 (Supplementary Fig. 
1d and Methods). The clone size distribution at E8.5 further shows 
that 2, 4 and 8 cell clones are the most abundant, indicating that cells 
divide up to three times and without substantial progenitor loss (Sup-
plementary Fig. 1e). At E9.5 and E10.5, larger clones are progressively 
under-represented, consistent with a longer cell cycle length and loss 
of progenitors due to terminal differentiation at these stages. Together, 
these observations indicate that the MADM clones accurately reflect 
the dynamics of tissue growth.

We next analysed the clonal shapes to estimate the extent of cell 
rearrangements. In many tissues, such as the Drosophila wing disc or 
mouse skin, uniform tissue growth with minimal cell rearrangements 
results in the formation of coherent clones19,20. By contrast, cell rear-
rangements cause clone fragmentation, where subsets of labelled cells 
are surrounded by non-labelled neighbours. We, therefore, used the 
number of fragments per clone as a readout of cell rearrangements. 
To exclude the effects of clone size, we measured the fragments for 
clones of a given size. The number of fragments linearly depends on 
the clone size for small clone sizes (≤4 cells) for which reliable statistics 
can be obtained (Fig. 1e). This allows us to define the fragmentation 
coefficient ϕ as the slope of a linear fit to the number of fragments as 
a function of clone size (for clone sizes ≤4 cells). We found that MADM 
clones labelled at E9.5 and E10.5 had very few fragments, corresponding 
to ϕ = 0.11 (95% confidence interval (CI) of 0.08 and 0.15) and 0.25 (95% 
CI of 0.21 and 0.30), respectively. By contrast, clones labelled at E8.5 
were highly fragmented with ϕ = 0.61 (95% CI of 0.55 and 0.68) (Fig. 1e).

Consistent with their higher fragmentation, clones labelled at 
E8.5 had dispersed at a larger maximum distance from the clone cen-
troid, namely, 10.2 ± 1.4 μm, whereas clones labelled at E9.5 and E10.5 
dispersed up to 3.3 ± 0.4 and 3.0 ± 0.8 μm, respectively (Supplemen-
tary Fig. 1f). The dispersal of cells was nearly isotropic with respect 
to the clone centre, with the exception of clones in the motor neuron 
progenitor (pMN) domain, which have a larger A–P/D–V aspect ratio 
compared with clones in other domains at E10.5 of development (Sup-
plementary Fig. 1g). This effect is consistent with previous observations 
and is related to the differentiation dynamics in the pMN domain21.  
Altogether, these results indicate that cell rearrangements occur  
frequently before E9.5 and significantly decline at later stages.

Tissue fluidity at high junctional tension and 
contractility
To investigate how the high extent of cell rearrangements at early devel-
opmental stages is achieved, we used a two-dimensional vertex model 
of the apical surface of the neuroepithelium21,22. In this model, polygo-
nal cells change neighbours by a process called T1 transition, in which 
an edge initially shared between two adjacent cells collapses and sub-
sequently reforms in a different orientation, leading to the separation 
of the cells. The packing geometry of cells in vertex models depends 
on the normalized tension (Λ̄) and normalized contractility ( ̄Γ) param-
eters. In the classical vertex model formulation22, cells have a constant 
target area. By contrast, in our model, the target area depends on the 
cell cycle time21. This reflects the fact that cells in pseudostratified 
neural epithelia undergo interkinetic nuclear movements (IKNMs) 
during the cell cycle. In these movements, the position of the nucleus 
along the apicobasal axis of cells may affect the apical cell surface area. 
To verify that the IKNM effect we implemented in the model reflects 
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Fig. 1 | Clonal analysis reveals the dynamics of cell rearrangements in the 
developing spinal cord. a, Clones generated with MADM labelling can comprise 
cells labelled with EGFP, tdTomato (tdT) or both depending on the type of 
recombination (Methods). b, To analyse the cellular and clonal shapes at the 
apical surface, the neural tube was opened by dissection along the dorsal and 
ventral midlines (blue lines). D–V patterning results in the formation of distinct 
progenitor domains along the D–V axis: pD, pI and pMN are denoted. A, anterior; 
P, posterior; a, apical; b, basal; D, dorsal; V, ventral. c, Mean number of MADM 
clones per embryo across litters (n = 10, 4 and 6 litters at E8.5, E9.5 and E10.5, 
respectively). 25–75 percentile (box), median (blue), mean (red), highest/lowest 
observations without outliers (whiskers). Two sided t-tests: P = 0.005 (E8.5 versus 
E9.5); P = 0.051 (E9.5 versus E10.5); P = 0.011 (E8.5 versus E10.5). d, MADM clones 
induced at the indicated stages and analysed 24 h later. Scale bars, 10 μm. e, Mean 
number of fragments per clone for a given clone size ± s.e.m. Clones analysed 
24 h after injection at the indicated stages. Both EGFP and tdTomato cells were 
included in the analysis. Corresponding fragmentation coefficient ϕ with 95% CI 
was obtained using linear fit to the data for clones ≤4 cells (dashed lines). Sample 
sizes (for c and e). E8.5, n = 46 clones; E9.5, n = 87 clones; E10.5, n = 94 clones 
(Supplementary Table 1).
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in mitosis have more than twofold higher mean apical cell area than 
cells in S phase, whereas the mean apical areas of cells in S and G2 phases 
were similar (Fig. 2c).

In other epithelia, fluctuations in the levels of myosin activity at 
cell junctions cause variation in the line tension and edge lengths of 
cells on a timescale of seconds to minutes23. We reasoned that a similar 
effect might occur in the neuroepithelium. We, therefore, introduced 
line-tension fluctuations in the model as an Ornstein–Uhlenbeck pro-
cess. To this end, we introduced a noise term in Λ̄, drawn from a Gauss-
ian distribution with characteristic deviation time σ and temporal 
correlation time τ (Methods). Increasing values of σ shifted the distribu-
tion of edge length fluctuations in the simulations (Fig. 2d). Hence, to 
obtain an experimental estimate of σ, we performed short-term live 
imaging of ZO1–GFP-expressing neuroepithelia at E8.5 and E10.5 of 
development (Methods and Supplementary Video 1). Although this 
procedure requires neural-tube dissection and the tissues can only be 
maintained live for 1–2 h, this approach provides an estimate of the 
variations in edge lengths that occur on shorter timescales. We 
observed that the distribution of edge length deviation during a 20 min 
interval corresponds most closely to simulations with σ = 0.02 at both 
E8.5 and E10.5 (Fig. 2d); hence, we used this value of σ in our subsequent 
analysis.

To determine the model parameters that reproduce the experi-
mentally observed clone fragmentation, we performed a systematic 
screening of the intermediate region of the Λ̄– ̄Γ  parameter space, 
where the network configuration is expected to be the most similar to 
epithelial tissues22,24 (Supplementary Table 2). We used a proliferation 
rate of 0.09 h−1 (equivalent to a cell cycle length of ~8 h), which corre-
sponds to the experimentally measured value at E8.5 (ref. 18 and Sup-
plementary Fig. 1d). We traced clones in silico for 16 h, which 
corresponds to the duration of Cre activity in experiments (Supple-
mentary Fig. 1b and Methods). The model revealed that the fragmenta-
tion coefficient varies across the (Λ̄, ̄Γ) parameter space (Fig. 3a). In 
particular, ϕ changes non-monotonically along the Λ̄ axis: it decreases, 
reaches a local minimum and subsequently increases with increasing 
values of Λ̄ (Fig. 3a). To qualitatively capture these differences, we 
defined an arbitrary threshold value of ϕ = 0.3, which subdivides the 
parameter space into three subregions. We refer to these as regions A, 
B and C (Fig. 3a). Regions A and C have high fragmentation (ϕ ≥ 0.3) 
and high T1 transition rate, whereas region B has low fragmentation 
(ϕ < 0.3) and low T1 transition rate (Fig. 3a,b and Supplementary Videos 
2–4). To further characterize the differences between regions, we 
compared the profiles of the self-overlap function25,26, which quantifies 
the fraction of cells that remain within approximately a cell radius of 
their relative initial position in the tissue. We found that these profiles 
are distinct in regions A and C compared with region B (Extended Data 
Fig. 1). Differences in the shape of the self-overlap function have been 
associated with glassy dynamics in vertex models26, suggesting that 
the differences between regions A, C and B represent transitions 
between fluid-like and solid-like states. Previous studies of vertex 
models have revealed that a density-independent fluid-to-solid phase 
transition1,7,22 characterized by a change in cell shape index occurs in a 
similar position in the parameter space to the transition between 
regions A and B that we observe. By contrast, the high rate of T1 transi-
tions in region C has not been previously observed and is surprising, 
given that the ground state of the model in this region is solid22,24.

The high fragmentation coefficient that we observed at E8.5 
(Fig. 1e) is consistent with both high fragmentation regions A and C. 
Hence, more than one mechanism, captured by either region A or 
C, could explain how the high fragmentation rates are achieved at 
early developmental stages. To distinguish potential mechanisms and 
understand how fragmentation is achieved in the E8.5 neural tube, we 
compared the cell shapes in simulations of regions A versus C (Fig. 
3c–f and Supplementary Fig. 2). Several first-order descriptors of cell 
shapes (Supplementary Table 3) were similar between regions A and C.  

For instance, these regions were characterized by high cell shape index 
and low packing order, measured by the fraction of hexagons, which 
are indicators of tissue fluidity7 (Fig. 3d,e). By contrast, a subset of cell 
shape descriptors differed between regions A and C. These included the 
coefficients of variation (CV) of the cell area, perimeter and elongation, 
as well as the area-ratio slope (Supplementary Fig. 2). The most striking 
difference between regions A and C was that only region C had high cell 
area CV, whereas in region A, the cell areas were nearly uniform (Fig. 3f).

Comparisons of cell shapes between model and experimental data 
have been used to infer the mechanical parameters of tissues27,28. There-
fore, to determine the (Λ̄,  ̄Γ) parameter region characteristic of the 
E8.5 neuroepithelium, we immunolabelled the tight junctions in E8.5 
neural plates and segmented the cell shapes (Fig. 3g). We found that 
for most cell shape descriptors, the best correspondence between data 
and simulations is in region C (Extended Data Fig. 2). A simultaneous 
comparison of a set of several descriptors confirmed that the best 
match to the experimental data is in region C (Fig. 3h). This suggests 
that the high fluidity of E8.5 epithelium is achieved in the regime of 
high junctional tension and contractility characteristic of region C. 
This is consistent with observations that the maintenance of high 
junctional tension is needed for proper neural tube closure at early 
developmental stages29,30.

IKNM fluidizes the neuroepithelium
High fluidity in region C has not been previously observed; hence, we 
investigated how the high level of cell rearrangements in this region 
arises. Because the implementation of an IKNM effect and Λ̄ noise are 
distinct features of our model, we first compared how the rate of T1 
transitions depends on these features (Fig. 4a). In the absence of any 
cell divisions and noise, T1 transitions are not observed. In the absence 
of cell divisions, in the presence of only junctional noise with σ = 0.02, 
the rate of T1 transitions in region C was also zero, similar to what is 
expected from the solid ground state of the network in this parameter 
region. The implementation of cell division by IKNM without Λ̄ noise 
resulted in a low T1 rate (<0.1 cell−1 h−1). A classical implementation of 
cell divisions without an IKMN effect, but with linear cell area increase 
during the cell cycle, both with or without Λ̄ noise, also resulted in a 
low T1 rate (<0.1 cell−1 h−1) (Fig. 4a and Supplementary Fig. 3a,b). By 
contrast, the IKNM effect and Λ̄ noise together increased the T1 rate 
to 0.37 ± 0.02 cell−1h−1 and resulted in levels of clone fragmentation 
that are comparable with the experimentally observed value. This indi-
cates that junctional noise on a timescale of minutes and fluctuations 
induced by IKNM (on a longer timescale of minutes to hours) cooper-
ate to induce an increase in T1 rates that effectively fluidizes the tissue.

To further explore how IKNM is associated with T1 transitions, 
we analysed the quartets of adjoining cells undergoing T1 transitions 
in simulations. This revealed that T1 quartets have a distinct distribu-
tion of mean cell areas compared with random quartets of cells (Sup-
plementary Fig. 3c). In particular, T1 quartets have, on average, one 
large cell and three smaller cells. Consistent with this distribution, a 
fraction of T1 transitions were followed by cell division of the largest 
cell in the simulations (Supplementary Fig. 3d). Nevertheless, the 
majority of T1 events did not coincide with cell divisions and could be 
either preceded or followed by cell divisions (Supplementary Fig. 3e). 
Consistent with this, we observed examples of T1 transitions occurring 
before cell division, after cell division, coincident with division or in 
the absence of cell division in short-term live-imaging experiments 
of mouse embryos expressing ZO1–GFP (Supplementary Fig. 4a–d). 
Furthermore, cell divisions that we observed in time-lapse imaging 
of neural epithelia mosaically expressing membrane-localized GFP 
(n = 17 dividing cells; Extended Data Fig. 3) were not associated with the 
separation or rearrangement of daughter cells within at least 30 min 
after cytokinesis. In addition, treatment with calyculin A, which leads 
to basolateral enrichment of F-actin (Supplementary Fig. 4e) and has 
been shown to increase junctional stability at mitosis and prevent 
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direct daughter-cell separation on cytokinesis11 (Methods), does not 
affect clone fragmentation in the neural tube (Supplementary Fig. 4f).  
Altogether, these observations suggest that cell rearrangements are 
not driven by the mitotic cell or its daughter cells in a direct cell autono-
mous manner.

To further investigate how IKNM influences cell rearrangements, 
we asked if the high cell area heterogeneity in the presence of IKNM 
(Fig. 4b) is sufficient to account for the increased cell rearrangements 
in region C. To address this possibility, we simulated a tissue without 
IKNM, in which the cell area grows linearly during the cell cycle, but with 
target cell areas drawn from a random distribution with CV comparable 
with the experimentally measured one (linear + A0 noise condition 

(Methods)). These simulations show that increasing the target cell 
area heterogeneity is not sufficient to increase the rate of T1 transitions 
(Fig. 4b,c). An alternative possibility is that the specific kinetics of cell 
area increase during the cell cycle generated by IKNM leads to a higher 
rate of T1 transitions. Consistent with this idea, the apical target area 
that increases exponentially over the cell cycle can generate increased 
T1 transitions. Furthermore, the sharper the increase in exponential 
growth rate, the higher is the area heterogeneity and higher is the rate 
of T1 transitions (Fig. 4a,b). Altogether, this analysis suggests that the 
specific cell area dynamics during the cell cycle, that is, the sustained 
low cell area during interphase and rapid increase at mitosis, are crucial 
for cell rearrangements in region C.
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Fig. 2 | IKNM and cell edge fluctuations in the neuroepithelium at E8.5 and 
E10.5 of development. a, Apical (x–y) and orthogonal (x–z) views of 
neuroepithelial cells in S, G2 and M phases at E8.5 and E10.5. EdU pulses with 
defined length and pH3 staining were used to distinguish nuclei in the indicated 
cell cycle phases. Sparse tdTomato labelling was used to track the cell bodies and 
associate nuclei with the respective apical surfaces (yellow arrows). Scale bars, 
10 µm. b, Distance from nuclei centres to the apical surface (ZO1). Mitotic nuclei 
are close to the apical surface (ZO1), whereas S and G2 nuclei are located more 
basally. c, Apical area of cells in the indicated cell cycle phases. In b and c, 25–75 
percentile (box), median (coloured line), mean (black line), highest/lowest 

observations without outliers (whiskers). Pairwise comparisons two-sided t-test: 
****P < 0.0001; ns, not significant, P > 0.05. Sample sizes (number of cells): E8.5, S 
(n = 172); M (n = 179); E10.5, S (n = 197); G2 (n = 147), M (n = 144) (Supplementary 
Table 1). d, Standard deviation of the relative edge length (l/ ̄l) over a 20 min time 
interval as a function of absolute edge length l (binned in 0.5 μm bins) for 
simulations with different levels of noise (σ = 0, 0.01 and 0.02 with n = 1,900, 1,827 
and 1,687 edges, respectively; Methods) and in time-lapse images of ZO1–GFP-
expressing neuroepithelia (E8.5, n = 309; E10.5, n = 387; Supplementary Table 1). 
Shaded regions, 95% CI.
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Consistent with the model, our experimental data from EdU- and 
pH3-labelling experiments show that cells in G2 have similar apical 
areas to cells in the S phase, but lower than cells in mitosis (Fig. 2c). 
This argues against a linear increase in cell area during the cell cycle and 

suggests that the apical cell area rapidly increases during cell division. 
Time-lapse imaging of neural epithelia expressing membrane GFP con-
firmed that the subapical cell area increases several times within less 
than 60 min before cytokinesis (Extended Data Fig. 3). These kinetics 
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region corresponds to the fluid ground state of the model, and the white region 
denotes an unstable region due to area collapse. Right: also, ϕ for ̄Γ  = 0.12. Error 
bars, standard error; n = 10 simulations. The green-shaded regions denote 
regions A, B and C. Also, ϕ for simulation with no noise (σ = 0) is shown for 
comparison. b, Mean rate of T1 transition events (cell−1 h−1) across the  
(Λ̄, ̄Γ) parameter space. c, Snapshots cropped from simulations of regions A, B 

and C (  0.12 and Λ̄ = −0.711, −0.393 and −0.074, respectively). kp = 0.09 h−1, 
kn = 0 h−1. Example clones are displayed in different colours. Note that the shape 
of the simulated tissues changes over time (Supplementary Videos 2–4).  
d–f, Mean cell shape index (d), fraction of hexagons (e) and coefficient of 
variation of apical cell areas (f) for ten simulations per (Λ̄,  ̄Γ) parameter set. 
 g, Apical view of the epithelium with ZO1 immunostaining. Cell segmentation 
(red traces). Scale bars, 10 μm. h, Difference between the cumulative distribution 
of cell shape descriptors p0, ϵ, α, hex, p0CV, ϵCV, ACV and PCV (Supplementary Table 3) 
in the simulations and experimental data.
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are similar to the rapid increase in apical area observed before cell divi-
sion in simulations (Fig. 4c). Altogether, these data support the results 
of the model and indicate that the kinetics of cell area variability that 
fluidizes the neuroepithelium is driven by the cell cycle and reflects the 
changing apicobasal nucleus position during IKNM.

Cell cycle dynamics influence cell rearrangements
Despite the presence of IKNM throughout development, the extent of 
clone fragmentation declines after E8.5, which raises the question of 
how this change is regulated. One possibility is that the mechanical 
parameters (Λ̄ and/or ̄Γ) change over time, such that the tissue ends 
up in the solid-like region B at later stages. To test this possibility, we 
performed laser ablation of individual cell junctions in E8.5 and E10.5 
neural tubes which expressed ZO1–GFP (Fig. 5a,b, Supplementary Vid-
eos 6 and 7 and Methods). We observed no significant difference in the 
initial recoil velocity of vertices following laser ablation between the 
two developmental stages, suggesting that the active tension at these 
stages is similar (Fig. 5c). Further supporting this conclusion, an anal-
ysis of the cell shapes in neuroepithelia from E9.5, E10.5 and E11.5 
embryos revealed that the experimentally observed cell shapes are 
consistent with parameter values characteristic of region C (Supple-
mentary Fig. 5). These results suggest that changes in Λ̄ and ̄Γ  are not 
the major factors underlying the change in tissue fluidity over time.

The impact of IKNM on clone fragmentation revealed by our model 
suggests that the cell division rate could be critical for regulating the 
extent of cell rearrangements by controlling the level of active stresses 
that generate fluctuations in the tissue. Between E8.5 and E10.5 of 
development, the proliferation rate decreases and terminal differentia-
tion commences18, which lowers the net tissue growth rate by about 
twofold (Supplementary Fig. 1d). To test whether this could lead to 

tissue solidification, we lowered the proliferation rate in the vertex 
model simulations from 0.09 to 0.03 h−1. This resulted in a strong 
decline in the fragmentation coefficient of clones throughout most of 
the (Λ̄, ̄Γ ) parameter space (Fig. 5d and Supplementary Fig. 6a). In 
region C, ϕ declined by about twofold and a corresponding decline in 
T1 rates was observed (Supplementary Fig. 6b), whereas the cell area 
CV was reduced to a lesser extent and remained significantly higher 
than in region B (Supplementary Fig. 6c). This reduction in fragmenta-
tion coefficient in the model is reminiscent of the experimentally 
observed reduction in ϕ (Fig. 1e), suggesting that the decreasing rate 
of proliferation over time is a key driver of the decline in cell 
rearrangements.

This analysis predicts that artificially lowering the proliferation 
rate would lead to a lower level of cell rearrangements. To test this, we 
induced Confetti clones at E7.5 and then cultured the embryos from 
E8.5 in the presence of cell cycle inhibitors l-mimosine or aphidicolin 
for 42 h (Fig. 5e and Supplementary Fig. 7a). As expected, these treat-
ments resulted in reduced mean clone sizes compared with control 
embryos (Fig. 5f and Supplementary Fig. 7b). Crucially, a comparison 
of the inhibitor-treated with vehicle-treated control embryos showed 
that for a given clone size, the number of fragments per clone was 
significantly reduced in both l-mimosine- and aphidicolin-treated 
conditions (Fig. 5g and Supplementary Fig. 7c). These results are in 
agreement with the model prediction and confirm that the prolifera-
tion rate has a profound influence on the extent of cell rearrangements 
in the neuroepithelium.

Besides the rate of proliferation, the overall rate of tissue growth 
can also be affected by cell loss. From E9.5 to E10.5 of development, 
terminal differentiation in the pMN domain results in the loss of pro-
genitors from the neuroepithelium and also contributes to lowering 
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the growth rate in this domain18. To test the effect of progenitor cell 
loss by terminal differentiation on cell rearrangements, we modelled 
cell loss in silico by randomly assigning a zero target area to a fraction 
of cells (Methods). These simulations showed that cell loss leads to a 
decrease in clone fragmentation throughout the (Λ̄, ̄Γ) parameter space 
(Supplementary Fig. 7d). Consistent with this prediction, Confetti 
clones in the pMN domain have significantly lower fragmentation 
coefficients than clones in the pD domain, where the differentiation 
rate is lower in this time interval (Supplementary Fig. 7e). This indicates 
that in addition to decreasing the proliferation, the increasing terminal 
differentiation rate also contributes to reduce the extent of cell rear-
rangements in the neural epithelium over developmental time. Alto-
gether, these observations strongly suggest that the increasing 
solidification of the mouse neuroepithelium over time is controlled 
by the observed changes in cell cycle dynamics over time.

Changes in the tissue growth rate have previously been linked to 
alterations in anisotropic growth and tissue morphogenesis21,31. To 
understand the consequences of reduced proliferation and therefore 
cell rearrangements for tissue morphogenesis, we treated E8.5 embryos 

with aphidicolin for 8 h. This resulted in striking changes in the shape 
of the neural plate, where the treated embryos had an increased ratio 
of anterior–posterior to dorsoventral length of the neural plate (Sup-
plementary Fig. 8). This result is consistent with previous predictions 
of our model21 and indicates that there is an inherent link among tissue 
fluidity, growth rate and tissue shape.

Conclusion
Morphogenetic processes have been recently linked to transitions 
in the material properties of tissues32. Here we demonstrate that in 
the mouse neural tube epithelium, there is a significant decline in tis-
sue fluidity around E9.5 of development. Our data suggest that this 
decline resembles a glass transition, controlled by changes in active 
stresses within the tissue. We show that in the neuroepithelium, active 
stresses are generated by IKNM during the cell cycle. Consequently, 
the proliferation rate determines the extent of cell rearrangement 
and tissue fluidity.

Previous studies have shown that tissue rheology can change in 
the absence of noise or fluctuations3,4,33,34. In many cases, transitions 
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in fluidity have been linked to changes in cell density or in mechani-
cal properties, such as cell adhesion, cortical tension and contrac-
tility2,3,5,6,33,35,36. Tissue fluidity can also decline as a result of T1 delay 
times or nonlinear junction behaviours37–39. By contrast, the role of cell 
divisions, apart from a few experimental examples3,10,11 and theoretical 
predictions9,40–43, has been largely underappreciated. Slowing down of 
growth is a hallmark of development and has been measured in multiple 
tissues44–46. Our findings, therefore, suggest that increases in tissue 
rigidity over developmental time could be a natural consequence of 
the cell cycle dynamics in many tissues.

IKNM is the characteristic of many epithelia47–49, and hence, our 
finding that IKNM fluidizes the epithelia might be relevant to other 
tissues besides the neural tube. Our analysis indicated that IKNMs exert 
their effect on cell rearrangements by affecting the apical surface-area 
kinetics of cells, which results in large cell area variation. Interest-
ingly, in the Drosophila wing disc, the presence of smaller-than-normal 
mutant cells has been shown to induce clonal fragmentation19. Yet, 
in our analysis, imposing ‘static’ cell area variation did not lead to 
high clonal fragmentation, indicating a distinct mechanism where the 
kinetics of cell area changes are crucial for epithelial rearrangements.
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Methods
Experiments
Mouse strains and generation of clones. All the animal procedures 
were performed in accordance with the relevant regulations and were 
approved under the license BMWFW-66.018/0006-WF/V/3b/2016 
from the Austrian Bundesministerium für Wissenschaft, Forschung 
und Wirtschaft. The following strains were previously described: 
MADM-11TG and MADM-11GT (ref. 17), Rosa26–Confetti (Brainbow-2.1 
(ref. 50)), Sox2–CreERT2 (ref. 51), mTmG (ref. 52), R26–ZO1–GFP (ref. 
53), Rosa26–tdTomato (ref. 54). To generate MADM clones in MADMTG/GT  
trans-heterozygous Sox2–CreERT2-expressing embryos, MADM-11TG/TG  
mice were bred to MADM-11GT/GT and Sox2–CreERT2/+, and pregnant 
females were injected with 3 mg per mouse of tamoxifen. To gener-
ate Confetti clones, heterozygous Sox2–CreERT2 mice were bred to 
heterozygous Rosa26–Confetti and pregnant mothers were injected 
with 0.75 mg per mouse of tamoxifen. Tamoxifen stock was prepared 
fresh in sunflower oil.

The first time point where we observe labelled cells is 8 h after 
tamoxifen injection (Supplementary Fig. 1b), reflecting the time it 
takes for the nuclear translocation of Cre and subsequent onset of 
reporter expression. Thus, the time of Cre activity in the 24 h tracing 
experiments (Fig. 1) is considered to be 16 h.

Immunohistochemistry, EdU incorporation and imaging. For E9.5 
and later stages, embryos were bisected along the roof plate before 
fixation and along the floor plate before immunostaining. Embryos 
were fixed in 4% paraformaldehyde and subsequently in methanol. 
Primary and secondary antibody incubations were 24 h each. Washes 
in phosphate-buffered saline with 0.1% Tween were 10 h each. The 
brachial region was flat mounted with grease spacers between slide 
and coverslip. Primary antibodies used were mouse anti-ZO1 (Invit-
rogen, 1:90), goat anti-Olig2 (R&D Systems, 1:100), sheep anti-GFP 
(AbD Serotec, 1:1,000), rabbit anti-RFP (Rockland, 1:2,000), mouse 
anti-Nkx2.2 (DSHB, 1:20), rat anti-pH3 (Sigma,1:1,000), goat anti-SOX2 
(R&D Systems, 1:100), rabbit anti-Brachyury (Abcam, 1:100). Secondary 
antibodies used were donkey anti-mouse Alexa Fluor 647 and donkey 
anti-goat FITC ( Jackson Immuno, 1:250), donkey anti-rabbit Cy3 and 
donkey anti-rat Cy3 ( Jackson Immuno, 1:1,000), donkey anti-sheep 
FITC ( Jackson Immuno, 1:250).

For MADM clone analysis, embryos were immunostained against 
ZO1, RFP, GFP and Nkx2.2. Clones located within 25 μm dorsal to the 
Nkx2.2 domain boundary were considered to be pMN clones. For Con-
fetti clone analysis, embryos were immunostained against ZO1 and 
Olig2. To stain actin filaments, the following steps of the protocol 
were modified: embryos were fixed in 4% paraformaldehyde over-
night, methanol fixation was omitted and Alexa Fluor 488 Phalloidin 
(Thermo Fisher Scientific, 1:100) was added together with the second-
ary antibody.

For EdU-labelling experiments, Sox2–CreERT2 mice were bred 
to ROSA26–tdTomato. Pregnant mice were intraperitoneally injected 
with 3 mg tamoxifen at E6.5 and with 0.5 mg EdU in phosphate-buffered 
saline (stock, 2.5 mg ml–1) on the day of the experiment. For S-phase 
labelling, mice were sacrificed 20 min after EdU injection at E8.5 and 
30 min after injection at E10.5. To label cells in G2, mice were sacrificed 
2 h after EdU injection. The embryos were dissected, fixed and immu-
nostained against ZO1 and RFP, as described above. Subsequently, the 
incorporated EdU was detected using the Alexa Fluor 488 Click-iT EdU 
imaging kit and protocol (Invitrogen, C10337).

Imaging was performed using a 40×/1.3 numerical aperture oil 
objective on an LSM880 inverted confocal microscope. Images of the 
apical surface capturing the entire dorsoventral length of the epithe-
lium were acquired through tile scanning with Z slices 0.8 μm apart. 
The tiles were configured in the form of a grid and overlapped 10%. 
Subsequently, the tiles were stitched using the BigStitcher plugin in 
Fiji version 2.9 (ref. 55).

Mouse embryo culture and inhibitor treatments. To combine 
clone tracing with mouse embryo culture and inhibitor treatments, 
heterozygous Sox2–CreERT2 mice were bred to Rosa26–Confetti. 
To induce sparse labelling (see the ‘Clone identification and frag-
mentation coefficient estimation’ section), pregnant mothers were 
injected with 0.75 mg per mouse of tamoxifen at E7.5. After 24 h, at 
E8.5, embryos were dissected and cultured with their yolk sac intact 
in temperature-controlled roller culture56 (5% CO2 and 20% O2). The 
embryo culture medium consisted of 1:1 rat serum: dissection medium57 
(Gibco DMEM/F12 without phenol red (Thermo Fisher), 10% Gibco foe-
tal bovine serum (Thermo Fisher), 1× penicillin–streptomycin (Sigma)). 
To perturb proliferation, embryos were cultured in the presence of 
210 μM l-mimosine (Sigma) or 800 nM aphidicolin (Sigma) for 42 h. 
Calyculin A (Merck Millipore) was used at a final concentration of 
0.6 nM for 42 h of culture. After culture, the embryos were harvested 
and processed for imaging, as described above.

Laser ablation. Embryos heterozygous or homozygous for R26–ZO1–
GFP were collected at E8.5 and E10.5 of development. To perform laser 
ablation, whole E8.5 embryos or dissected flat-mounted E10.5 brachial 
neural tubes were immobilized for live imaging in glass-bottom dishes 
(Ibidi) in embryo culture medium (see ‘Mouse embryo culture and 
inhibitor treatments’ section) supplemented with 8 mg ml–1 fibrino-
gen (Millipore). Thrombin (0.5 U μl–1, Sigma Aldrich) was added to 
form a fibrin gel18. The samples were kept in an environmental cham-
ber with 5% CO2 at 37 °C. Laser ablation was performed on an Andor 
spinning-disc system with inverted Axio Observer Z1, C-Apochromat 
63×/1.2 water-immersion objective (Carl Zeiss) using a 355 nm pulsed 
UV-A nanolaser (Teem Photonics) at 1.8–1.9% laser power with 25 pulses 
(2 shots µm–1) at 1,000 Hz. Junction ablation was performed approxi-
mately at the centre of the cell edge between two vertices along a 2 µm 
line oriented along the A–P axis. Edges oriented dorsoventrally and 
located at intermediate dorsoventral positions were selected for the 
experiment. Images were collected with 250 ms exposure time and 
frame rate of 1.5 s. To determine the recoil velocities, the positions of 
the vertices were manually tracked over time in Fiji. The initial recoil 
velocity was defined as the distance between the vertices at t1 minus 
the distance at t0 (before the cut), divided by the time interval between 
t0 and t1 (1.5 s).

Live imaging. To image the apical surface of the neuroepithelium at 
the level of tight junctions, embryos heterozygous or homozygous for 
ZO1–EGFP were collected at E8.5 and E10.5. Whole E8.5 embryos and 
bisected E10.5 brachial neural-tube regions were positioned on 35 mm 
glass-bottom dishes (Ibidi) in an embryo culture medium (see the 
‘Mouse embryo culture and inhibitor treatments’ section) and immo-
bilized with coverslips on silicon grease spacers. Imaging of the ZO1–
GFP-labelled apical surfaces was performed on an inverted LSM800 
confocal microscope using a 40×/1.2× water objective. The Z stacks 
were acquired with Z slices 0.75 μm apart for a period of about 1–2 h.

Imaging of the cell membranes (marked by membrane GFP) at the 
subapical level was performed using E10.5 Sox2–CreERT2/+, mTmG/+ 
embryos of mothers injected with 1 mg tamoxifen 24 h before dissec-
tion. Brachial neural-tube regions were dissected and prepared for 
imaging the same way as that for laser ablation experiments. The Z 
stacks were acquired with Z slices 0.7 μm apart.

Data analysis
Clone identification and fragmentation coefficient estimation. 
Images were processed in Fiji. Labelled progenitor cells were manually 
marked at their apical surface at the level of ZO1 staining. Fragments 
were defined as groups of adjacent cells that share an edge or a vertex. 
Clones were defined as groups of labelled progenitor cells in close 
proximity of each other (<25 μm to the nearest labelled cell).
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In the case of MADM clones, G2 recombination followed by 
the X segregation of chromosomes in mitosis produces a GFP- and 
RFP-expressing daughter cell (Fig. 1a). Both GFP- and RFP-expressing 
cells were included in defining a clone. G2–Z segregation produces an 
unlabelled and a GFP/RFP-coexpressing daughter cell. G1 recombina-
tion produces a GFP/RFP-coexpressing cell. In our dataset, we found 
an increasing proportion of GFP/RFP-coexpressing cells over time 
(Supplementary Fig. 1a), which correlates with the increasing rela-
tive G1 duration over time18. This suggests that the majority of GFP/
RFP-coexpressing clones result from G1 recombination. We, therefore, 
also included GFP/RFP-coexpressing clones in the analysis. MADM 
clones and the fragments they contain were manually identified  
from images.

In the case of Confetti clones, only the RFP, YFP and CFP reporters,  
which can be detected at the apical surface, were used for the analy-
sis, whereas clones labelled by the nuclear GFP were excluded. The 
sparseness of labelling in the experiments was as follows: 322 ± 38, 
366 ± 39 and 235 ± 36 cells mm–2 for CFP, RFP and YFP, respectively 
(mean ± standard error of the mean (s.e.m.) for 54 images is given). To 
identify Confetti clones, the cell coordinates were recorded and sub-
sequently analysed using a custom-built Python script, similar to the 
one reported elsewhere18. CFP, RFP and YFP channels were separately 
analysed. The labelled cells were assigned to the same fragment if the 
distance between them was <5 μm and to the same clone if they were 
<25 μm apart. These assignments were consistent with the visual iden-
tification of fragments and clones, except in occasional cases where 
the clone size was unreasonably large. Labelled postmitotic neurons 
that have delaminated from the neural epithelium were excluded  
from the analysis.

We determined the fragmentation coefficient ϕ by fitting  f = ϕs + b 
to the respective dataset, where f is the mean number of fragments 
for a given clone size, s is the size of the clone in cells and b is an offset 
parameter that is chosen in such a way that the line crosses through the 
point (1, 1), reflecting the fact that single-cell clones have one fragment 
by definition. For MADM clones analysed 24 h after tamoxifen injection, 
reliable statistics could be obtained for clones with four cells or less; 
hence, only these clone sizes were used for estimating ϕ. In mouse 
embryo culture experiments, Confetti clones were analysed 64 h after 
tamoxifen injection. In this case, reliable statistics could be obtained 
for clone sizes of ≤8 cells and these were used to estimate ϕ.

Growth rate estimation. The growth rate of MADM clones kg was 
inferred from the mean clone size s as kg = ln(s)/∆t , where ∆t = 16 h is 
the time interval of Cre activity in the experiments (Supplementary 
Fig. 1b–d and Methods).

Spread and anisotropy of clones. To estimate the spread of clones, 
the coordinates of cell centres in a clone were used to determine the 
clone centroid. The maximum spread of the clone was quantified as 
the distance between the clone centroid and furthest cell centre. To 
estimate the mean maximum spread for a given developmental stage, 
clones of all sizes were taken into account (including single-cell clones).

Clone anisotropy was quantified by drawing a bounding rectan-
gle around the clone, using the apical cell outlines, marked by ZO1, to 
demarcate the cells. Images are always oriented so that the vertical axis 
is aligned with the tissue D–V axis. The aspect ratio of the clone is then 
given by the D–V to A–P side lengths of the bounding rectangle. Note 
that quantifying the clone shape at the apical surface, rather than the 
cell bodies or nuclei, avoids potential artefacts of tissue mounting, 
where the clone shape could be affected by the misalignment of the 
apical and basal surfaces of the neural epithelium.

To quantify the self-overlap function in simulations, we adapt the 
definition from other work25,26 for a growing tissue. The self-overlap 
function is defined as Qs (t) =

1
N
∑N
k=1 w (||r̃k (t) − r̃k (0)||), where r̃k (t) is the 

position of the centre of mass of the kth cell at time t, w is a window 

function that gives 1 for ||r̃k (t) − r̃k (0)|| ≤ R̃cell and 0 otherwise, and N is 
the number of cells. The R̃cell value is the characteristic length that cor-
responds to the initial cell radius in the reference frame defined below. 
To correct for growth, we consider every cell trajectory in a reference 
frame that is centred at the initial position of that cell and normalized 
by the fastest growing dimension. In practice, we apply the following 
two steps: (1) for every newborn cell with position (rD–V, rA–P) at time 
t = 0, we shift the corresponding cell trajectory to start in  
(rD–V, rA–P)→(0, 0); (2) we then normalize the cell position over time by 
dividing its position by the D–V and A–P extensions of the growing 
tissue with the correction from the anisotropic growth, that is, 
r̃k (t) = ( rD−V

LD−V
, rA−P
LA−P

⟨ LA−P
LD−V

⟩) , where LD–V and LA–P are the respective tissue 

dimensions at time t, and ⟨ LA−P
LD−V

⟩ is the average A–P/D–V ratio for a given 

simulation. The R̃cell value is defined as √⟨A⟩
2
/LD−V, where 〈A〉 is the average 

cell area at time t = 0, and LD–V is taken at t = 0.

Segmentation of cell shapes. Apical surfaces immunostained for ZO1 
of the E8.5, E9.5, E10.5 and E11.5 neural tubes were segmented using the 
Tissue Analyzer plugin58 in Fiji. The cell outlines were automatically 
identified and manually checked for correctness. This plugin provided 
the description of a polygonal mesh including the vertices and edges 
of cell outlines as well as the number and identity of cell neighbours. 
The cell area was calculated using a standard formula for the area of 
the n-gon and cell perimeter as a sum of the length of polygon edges. 
The cell elongation was calculated as done elsewhere21,27.

In the EdU- and pH3-labelling experiments, the distance between 
the nucleus centre and ZO1-labelled junctional level was measured 
using Imaris 9.1 (Oxford Instruments) from confocal Z stacks. To associ-
ate EdU-labelled nuclei with the corresponding apical surfaces of cells, 
cells that expressed cytosolic tdTomato and therefore allowed tracing 
the cell body were used for the analysis.

Cell areas in the EdU experiment (Fig. 2) and membrane-GFP- 
expressing embryos in live imaging (Extended Data Fig. 3) were quanti-
fied using Imaris 9.1. For this, the cells were segmented using a water-
shed function. Subsequently, the cell area was estimated from the 
segmented cell volume within the relevant Z slice divided by the voxel 
depth. For the EdU experiments, the relevant Z slice is the one marked 
by the ZO1 expression. For the membrane-GFP-expressing embryos, the 
cell areas were quantified at the Z position corresponding to 2.1–2.8 μm 
below the apical cell membrane.

To quantify the variation in edge length over time, time-lapse 
images of ZO1–GFP-expressing neural tubes were segmented in Fiji 
in the same way as the fixed images. To avoid large fluctuations in 
edge length that arise as a result of cell divisions, T1 transitions or seg-
mentation errors, we only quantified the edges that could be tracked 
throughout the duration of the experiment and were at least one cell 
away from the cells undergoing large fluctuations.

Simulations
Vertex model description and implementation. The vertex model 
used in this study is based on another work21 and was implemented here 
using Python 3.7. Briefly, the following energy function is minimized 
in every simulation step:

E = ∑
α

Kα
2 (Aα − A0α (t))

2 +∑
ij
Λijlij +∑

α

Γα
2 L

2
α (1)

where α = 1,…, Nc enumerates all the cells; i = 1,…, Nv enumerates all the 
vertices; Kα is the elasticity coefficient; Aα is the area of cell α; A0α (t) is 
the preferred area of cell α at time t; Λij is the line-tension coefficient 
associated with the cell edge between i and j of length lij; and Γα is the 
contractility coefficient of cell α with perimeter Lα. We assume that the 
parameters are the same for each cell (Kα = K, Γα = Γ) and for each edge 
(Λij = Λ) if no noise in the line tension is considered. The preferred cell 
area A0α (t) is a piecewise linear function reflecting the effect of IKNM 
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on the apical cell area in the four phases of the cell cycle (G1, S, G2 and 
M; also see below). Adopting the same notation as previous studies21,22, 
we use the normalized parameters as Λ̄ = Λ

K(A0)3/2
 and ̄Γ = Γ

KA0
, where A0 

is the average target area during the cell cycle.
The motion of vertices is determined from the first-order kinetics: 

dri
dt

= − 1
μ
∂E
∂ri

, where ri is position of vertex i and μ is the drag coefficient. 

Tissue growth was considered to be anisotropic with drag coefficients 
μ′ and μ″ in the D–V and A–P directions, respectively21.

The following changes were made in the current version of the 
model:

Implementation of junctional noise. We considered that fluctuations 
in the internal line tension follow an Ornstein–Uhlenbeck process, 
namely, dΛij

dt
= − 1

τ
(Λij − Λ0ij ) + ξij (t) , where ξij(t) is white, uncorrelated 

noise with ‹ξij(t) = 0› and ⟨ξij (t) ξkl (t′)⟩ =
2σ2

τ
δikδjlδ(t − t′) . We used the 

following discretization23:

Λij (t + Δt) = Λij (t) −
Δt
τ (Λij (t) − Λ0ij ) +√

2σ2Δt
τ ξij(t) (2)

where Δt is a time step used in the simulation, τ is the line-tension cor-
relation time, σ is the intrinsic line-tension deviation, Λ0ij = Λ   is a refer-
ence line tension that corresponds to the line tension without noise 
and ξij (t) is drawn from the Gaussian distribution N(0, 1).

Implementation of T1 and T2 transitions. The T1 transition is 
defined elsewhere21. In particular, when an edge between two neigh-
bouring cells is shorter than a predefined small length lT1, this edge 
is replaced with a new edge that is perpendicular to the old edge and 
has a length lnew = 1.01lT1. Using this definition, we observed that for 
negative line tension or in the presence of line-tension fluctuations, 
immediately after a T1 transition, the new edge can shrink instead of 
extending, thus leading to a reverted T1 transition. This can occur 
multiple times at a given edge, and hence, we call this an oscillatory 
T1 transition.

One strategy to partly mitigate the occurrence of oscillatory 
T1 transitions is to increase the lnew/lT1 ratio59. However, particularly 
in region A, the oscillatory T1 transitions are generic and increasing 
lnew/lT1 does not result in decreasing the number of oscillatory T1 
transitions. Therefore, we approached this instead by keeping track 
of the oscillatory T1 transitions and subtracting them from the overall 
count of T1 events in our statistics. More specifically, we track how 
many T1 transitions occurred for every edge, using the dictionary 
data structure in Python. If repeated T1 transitions occurred nT1  
times between time t0 and tnT1, their contribution to the T1 unique 
rate, namely, T1UNQ, was considered to be 1/nT1 for times between t0 
and tnT1.

T2 transitions are defined in another work21. In particular, cells in 
which the area becomes very small have shrinking edges. This results 
in sequential T1 transitions, which finally lead to a double-sided cell 
with zero area. Such cells are removed from the simulation by merging 
the two vertices that delimit the double-sided cell into one vertex. The 
last T1 transition that results in a double-sided cell is counted as a T2 
transition, and is not included in the overall number of T1 transition 
events. All the T1, T1UNQ and T2 rates are estimated in time windows of 
Δt = 2 h by the dividing number of respective events with the average 
number of cells in this time window. The T1 rate reported in the main 
text as well as in Figs. 3b and 4a and Supplementary Fig. 6b is defined 
as the T1 unique rate.

Cell removal from the tissue through differentiation is imple-
mented similar to another work21 with the additional requirement that 
if the cell was randomly selected for differentiation, the line-tension 
coefficients Λij for this cell are no longer fluctuating and have assigned 
a positive value of Λij = 0.2, which fosters shortening of all the edges 
of this cell.

Cell lineage tracing. To efficiently analyse in silico clonal populations, 
the complete information about cell lineage, that is, daughter-cell 
identifiers and division times, are stored. For the analysis of clone 
fragmentation in silico, we used all the clones per simulation and ten 
independent simulations per parameter set.

Parameters of the model. The used parameters are summarized in 
Supplementary Table 2. The default proliferation rate in the model 
kp = 0.09 h−1 has been chosen to match with the experimentally 
observed tissue growth rate (Supplementary Fig. 1d): it results in mean 
sizes of simulated clones of three to four cells (depending on the exact 
value of Λ̄ and ̄Γ), which is similar to the clone sizes observed in injec-
tion at E8.5 (Supplementary Fig. 1c). The specific proliferation (kp) and 
differentiation (kn) rates used in the simulations are given in the cor-
responding figure legends. The critical area AC has been set to 27 µm2 
so that the range of cell areas in the simulations (Supplementary  
Fig. 2a) is comparable with the range of areas measured in the experi-
ments (Supplementary Fig. 5b). Furthermore, AC = 27 µm2 results in a 
very close agreement between the mean edge length in simulations 
and in the E10.5 experimental data (1.47 ± 0.01 μm and 1.43 ± 0.01 μm 
(mean ± s.e.m.), respectively; Fig. 2d). The length of a simulation step 
Δt = 0.29 s has been chosen such that the model has high temporal 
resolution and includes on the order of 105 simulation points per cell 
cycle (105 points correspond to 8 h). The units of force are arbitrary. 
Every data point across the ( Λ̄, ̄Γ) parameter space was obtained by 
pooling together cells from ten independent simulations for a given 
set of parameters (Λ̄, ̄Γ , kp, kn).

Vertex model initialization and in silico clone tracing. The vertex 
model is initiated with a regular hexagonal lattice of ten rows with ten 
cells per row. In the initial simulation phase, the tissue grows for 16 h 
with Λ̄ = −0.184, ̄Γ  = 0.07, kp = 0.09 h−1, kn = 0 h−1 and σ = 0. In our default 
simulations, we used distinct drag viscosities for the D–V and A–P 
dimensions, resulting in rectangular tissues with A–P/D–V length ratios 
of <1 at the end of the simulations (Supplementary Videos 2–4). After 
the initial simulation phase, the number of cells is 460 ± 19 
(mean ± standard error), the time is set to 0 and the parameters are 
modified to the target simulation parameters. The tissue is then allowed 
to grow with the target simulation parameters for 8 h. Subsequently, 
clones are labelled and clonal populations of cells are tracked for 16 h.

Analysis of cell area heterogeneity and kinetics. To investigate 
the area variability of cells undergoing a T1 transition, we defined 
quadruplets of neighbouring cells, designated as A, B, C and D, where 
A and B share a common edge and C and D do not (Supplementary 
Fig. 4c). We further define the cell names based on the cell area such 
that area of A < area of B and area of C < area of D. If the common 
edge between A and B shrinks below lT1, a T1 transition takes place, 
as a result of which A and B are no longer adjacent, whereas C and D 
become new neighbours. For comparison, ‘random’ quadruplets are 
generated by randomly finding A and B cells separated by a common 
edge, and finding cells C and D that are adjacent to A and B, but not 
to each other. Note that because the polygonal mesh has no rosettes, 
that is, each vertex has three edges associated with it, the assignment 
of a quadruplet to an edge is unique.

Cell area kinetics during cell cycle and cell division. The IKNM is 
approximated as a linear combination of two terms, one corresponding 
to a linear increase in cell volume and the other interpolating for the 
change in apical cell surface as a function of the age of a cell:

A0α (t) =
1
2 (gαΔt + 1)(ρα (Δt)

2 + 1) (3)

where gα is the growth rate of the cell α, Δt = t – tnew is the age of the cell 
that divided at tnew and ρα(Δt) is a piecewise linear function 
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representing the apical–basal position of the nucleus as a function of 
Δt and cell cycle phase21. This function equals to zero in the S phase of 
the cell cycle in which the nucleus stays basal, and its value is 1 during 
mitosis when the nucleus is apical. The exact form of ρα(Δt) is defined 
elsewhere21. The growth rate gα is drawn from a normal distribution 
with mean equal to 1/tT, where tT is the total cell cycle time, and stand-
ard deviation σg = 0.45/tT. Negative growth rates are not allowed. In 
the simulation, the proliferation is defined as λ = ln(2)/tT. The cell 
divides when the cell is in the M phase, that is, Δt

tT
 > 0.9, and the cell 

volume exceeds a critical value, namely, A0α (t) > AC. The cell divides by 
introducing a new edge that splits this cell into two daughter cells that 
enter the next cell cycle21.

To study how the cell area kinetics affects T1 transitions, we use 
different forms of A0α (t) and different levels of line-tension noise σ. In 
Fig. 4, different conditions for area kinetics are defined as follows:

‘N/A’, no division, σ = 0.02
‘IKNM’, A0α (t) as in equation (3), σ = 0;
‘Linear’, cell divisions without IKNM (that is, ρα(Δt) = 1 in equation 

(3)), σ = 0.02;
‘IKNM’, default condition with A0α (t) as in equation (3) and Λ̄ noise 

as in equation (2) with τ = 37 s, σ = 0.02;
‘Linear + A0 noise’, apical–basal position of nucleus in equation (3) 

is replaced with ρα(Δt) = z, where z is drawn from a uniform distribution 
ranging from 0 to 2; σ = 0.02;

‘exp λ’, ‘exp 2λ’, ‘exp 4λ’, a linear increase in cell area is replaced with 
an exponential increase, that is, A0α (t) =

1
2
(exp(gαΔt) + 1); λ, 2λ and 4λ 

correspond to gα = 1, 2 and 4, respectively; σ = 0.02.

Comparison between model and data. To estimate σ from the experi-
mental data, simulations were adjusted to generate 48 frames every 
25 s, so that the timescale is comparable with the live-imaging experi-
ment and similar to the correlation time τ = 37 s. Simulations were 
initialized for 16 h with initialization parameters followed by 8 h with 
target parameters and defined magnitude of noise (σ = 0, 0.01 and 
0.02). After that, the edges were tracked and filtered to avoid seg-
mentation errors or fluctuations due to divisions and T1 transitions 
influencing the outcome. In particular, the edges were selected only 
if the two cells connected by an edge did not divide or undergo a T1 
transition for the tracking interval of 48 frames. Furthermore, only 
the tracked edges that shared their two vertices with other tracked 
edges were analysed.

For every edge, the relative edge length is defined as ̃l = l/ ̄l, where l 
is the edge length at a particular time and  is the mean edge length 
throughout the time interval. The standard deviation of the relative edge 
lengths std(l/ ̄l) over time changes with the absolute edge length (Fig. 2d) 
in a manner that depends on the value of σ. This was used to compare 
the simulations with the experimental data for different σ values.

To compare the cell shapes between vertex model simulations and 
experimental data, we use the cumulative distance between the model 
and experimental data including the following non-dimensional 
descriptors D ∈ {p0, ϵ, α, hex, p0CV, ϵCV, ACV, PCV} (Supplementary  
Table 3). For each descriptor D, we calculate a difference 
DΔ = ||Dexp − Dsim|| /σ̂D,, where Dexp  is the mean value of D obtained for all 
the cells in the simulation for a given set of parameters (Λ̄, ̄Γ , kp, kn) at 
final time, Dsim  is the mean value of D estimated for the segmented data 
at a specific developmental stage and σ̂D is the standard deviation of 
||Dexp − Dsim|| over all the samples. The cumulative distance Δtot/n is then 
defined as the sum of differences DΔ for all the descriptors, normalized 
to the number of descriptors, that is, ∆tot

n
= 1

number of descriptors
∑
D
DΔ.

The z score for a given cell shape descriptor is defined as 

z = (Dsim − Dexp) /σDexp, where σDexp is the standard deviation of the mean 

Dexp  estimated for different experimental images (Supplementary 
Table 1). In Extended Data Fig. 2, we report the absolute value of  
z score.

Software and code
The vertex model code used in this study is available via GitHub at 
https://github.com/mpzagorski/vertex_model_python_3. The code is 
modified from another work21 to include an adaptation to Python 3.7, 
implementation of junctional noise, handling oscillatory T1 transitions 
and cell lineage tracing (Methods). Custom code in Mathematica 12.1 
(Wolfram) was used to analyse the results of the vertex model, estimate 
fragmentation coefficient, cell shape descriptors, and comparison 
between simulation and experimental data. Supplementary Videos 2–4 
are generated using custom Mathematica 12.1 code by post-processing 
the results of the vertex model simulation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data are available for this paper. All other data that support the 
plots within this paper and other findings of this study are available 
from the corresponding authors upon reasonable request.

Code availability
The vertex model code used in this study is available via GitHub at 
https://github.com/mpzagorski/vertex_model_python_3. Other code 
supporting the analysis in this paper is available from the correspond-
ing authors on reasonable request.
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Extended Data Fig. 1 | Self-overlap function for regions A, B, C. Qs(t) quantifies 
the fraction of cells that remain within a characteristic distance (approximately 
one cell radius) after time t, after the displacement due to growth has been 
accounted for (Methods). Thus, fewer cells have changed their relative position in 

the tissue in region B compared to regions A and C. Single simulation for each 
region at ̄Γ = 0.12 and varied line tension Λ̄ = −0.711 (Region A, n = 702 cells), 
Λ̄ = −0.393 (Region B, n = 2546 cells), and Λ̄ = −0.074 (Region C, n = 1805 cells). 
Only cells that have not divided within 8 h are considered.
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Extended Data Fig. 2 | Comparison of cell shape descriptors between 
experimental data at E8.5 and simulations. Difference (absolute Z-score 
values) between experimental data at E8.5 and simulations in units of standard 
deviations of the experimental data separately for each cell shape descriptor 

(defined in Table S3) across the (Λ̄, ̄Γ) parameter space (see Methods). Low values 
indicate good agreement between simulation and experimental estimates. The 
dashed lines correspond to ϕ = 0.3 and delineate regions A, B and C (see Fig. 3A).
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Extended Data Fig. 3 | Cell area of neural progenitors at cell division.  
A. Snapshots from confocal time lapse imaging (Supplementary Video 5) of 
neuroepithelial cells expressing membrane GFP at E10.5. The first subapical 
z-section (shown) was used for tracing and quantification. Asterisk marks a 
dividing cell and its daughters. Scale bars, 5 μm. B. Mean cell area over time 

quantified from time-lapse movies such as the one shown in A. n = 17 cells from  
3 embryos, shaded regions 95% confidence intervals. Time = 0 is the first time 
point where two distinct daughter cells were detected. Dividing cells rapidly 
increase their apical area prior to mitosis.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Give P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection LSM880 inverted with Zen Black 2.3 software was used to collect clone images. 
LSM800 inverted with Zen Blue 3.5 software was used for live imaging. 
Andor spinning disc system with inverted Axio Observer Z1 was used for junction ablations. 

Data analysis Clone images and junction ablations movies were analyzed with Fiji. 
Live imaging files were analyzed with Fiji and Imaris 9.1. 
Cell segmentation was performed using Tissue Analyzer plugin in Fiji.  
Analysis of vertex model results was performed using Mathematica 12.1. The code used for vertex model simulations is available in GitHub 
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- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets that support the current study are available from the corresponding authors on reasonable request (as stated in the Data Availability Statement).
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how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All sample sizes are reported in the figure legends and in the Supplementary Table S1. 
Data was collected from experiments that involve breeding of transgenic mice, therefore sample sizes were minimized whenever possible. 
Experiments were reproduced at least three times and all transgenic embryos resulting from the experimental timed matings were taken for 
analysis.

Data exclusions No data were excluded from analysis. The fragmentation coefficient analysis is constrained to clones with small sizes (as described in 
Methods) for which reliable statistics can be obtained.

Replication We confirm that all experimental results have been repeated reproducibly at least 3 times. Simulations were performed 10 times per 
condition, as described in the Methods and figure legends. 

Randomization No randomization methods were used to determine how samples/organisms were allocated.

Blinding Blinding was not performed. The experimental data was collected and analyzed by the same person.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary antibodies: 

Mouse anti-ZO1 (33-9100 Invitrogen, 1:90) 
Goat anti-Olig2 (AF2418 R&D systems, 1:100) 
Sheep anti-GFP (4745-1051 AbD Serotec, 1:1000) 
Rabbit anti-RFP (600-401-379 Rockland, 1:2000) 
Mouse anti-Nkx2.2 (74.5A5 DSHB, 1:20) 
Rat anti-pH3 (H9908 Sigma,1:1000) 
Goat anti-SOX2 (AF2018 R&D systems, 1:100)  
Rabbit anti-Brachyury (ab209665 Abcam, 1:100).  
 
Secondary antibodies: 
Donkey anti-mouse Alexa fluor 647 (Jackson Immuno, 1:250) 
Donkey anti-goat FITC (Jackson Immuno, 1:250) 
Donkey anti-rabbit Cy3 (Jackson Immuno, 1:1000) 
Donkey anti-rat Cy3 (Jackson Immuno, 1:1000) 
Donkey anti-sheep FITC (Jackson Immuno, 1:250). 

Validation All antibodies were previously validated by vendors and published work. Relevant studies include: 
Mouse anti-ZO1: The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium ( Grego-
Bessa et al. 2015 eLife DOI: 10.7554/eLife.12034) 
Goat anti-Olig2 and Mouse anti-Nkx2.2:  Coordination of progenitor specification and growth in mouse and chick spinal cord 
( Kicheva et al., 2014 Science DOI: 10.1126/science. 1254927) 
Sheep anti-GFP : Id4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult Hippocampus ( Zhang et al., 2019 
Cell DOI: 10.1016/j.celrep.2019.07.014) 
Rabbit anti-RFP: Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus ( Zhou et al., 
2020 Nature communications DOI: 10.1038/s41467-020-17890-2) 
Rat anti-pH3: Cell intercalation driven by SMAD3 underlies secondary neural tube formation ( Gonzalez-Gobartt et al., 2021 
Developmental cell  DOI: 10.1016/j.devcel.2021.03.023) 
Goat anti-SOX2: Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-
directed neural patterning ( Peterson et al., 2017, Genes & Dev DOI: 10.1101/gad.207142.112) 
Rabbit anti-Brachyury: Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal 
progenitor derivatives (Wind et al., 2021, Development  DOI: 10.1242/dev.194415).  

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Mus musculus embryos prior to midgestation were used. The following strains were bred to produce these embryos:    
Tg(Sox2-cre/ERT2),  
Gt(ROSA)26Sor<tm1(CAG-Brainbow2.1)Cle,  
Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo,  
Igs2tm1(ACTB-EGFP,-tdTomato)Luo (MADM-11GT),   
Igs2tm2(ACTB-tdTomato,-EGFP)Luo (MADM-11TG), 
R26-ZO1-EGFP: Accession no. CDB0260K(http://www2.clst.riken.jp/arg/reporter_mice.html),  
B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J. 

Wild animals No wild animals were used.

Reporting on sex The sex of the embryos used is unknown. 



4

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Field-collected samples No field collected samples were used.

Ethics oversight All animal procedures were performed in accordance with the relevant regulations and were approved under the license 
BMWFW-66.018/0006-WF/V/3b/2016 from the Austrian Bundesministerium für Wissenschaft, Forschung und Wirtschaft. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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