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Unidirectional scattering with spatial 
homogeneity using correlated  
photonic time disorder

Jungmin Kim    1,2, Dayeong Lee2, Sunkyu Yu    2   & Namkyoo Park    1 

Recently, there has been increasing interest in the temporal degree of 
freedom in photonics due to its analogy with spatial axes, causality and 
open-system characteristics. In particular, the temporal analogues of 
photonic crystals have allowed the design of momentum gaps and their 
extension to topological and non-Hermitian photonics. Although recent 
studies have also revealed the effect of broken discrete time-translational 
symmetry in view of the temporal analogy of spatial Anderson localization, 
the broad intermediate regime between time order and time uncorrelated 
disorder has not been examined. Here we theoretically investigate the 
inverse design of photonic time disorder to achieve optical functionalities 
in spatially homogeneous platforms. By developing the structure factor and 
order metric using causal Green’s functions for disorder in the time domain, 
we propose an engineered time scatterer, which provides unidirectional 
scattering with controlled scattering amplitudes. We also show that the 
order-to-disorder transition in the time domain allows the manipulation 
of scattering bandwidths, which makes resonance-free temporal colour 
filtering possible. Our work could advance optical functionalities without 
spatial patterning.

Associating temporal and spatial axes has enriched the perspective 
on manipulating wave phenomena. Owing to the space–time analogy 
between the electromagnetic paraxial equation and the Schrödinger 
equation, the temporal axis can be considered an alternative or auxiliary 
axis to the spatial dimension. This similarity between temporal and 
spatial axes has established the fields of quantum-optical analogy1, 
non-Hermitian2, topological3,4 and supersymmetric5,6 photonics, and 
universal linear optics7. On the other hand, the uniqueness of a temporal 
axis has also been a recent research focus for achieving distinct design 
freedom8,9 from spatial ones, such as the control of translational, rota-
tional or mirror symmetries. For example, broken time-translational 
symmetry results in dynamical wave responses, which require the 
open-system configuration: energy or matter exchange with the system 

environment. In this context, dynamical wave devices with optical non-
linearity10,11 or non-Markovian processes12 require the design strategy 
to appropriately break the time-translational symmetry. Furthermore, 
causality leads to unique scattering distinct from its spatial counter-
part, completely blocking backscattering along the temporal axis13.

Recent studies utilizing temporal degrees of freedom have thus 
focused on exploiting similarities and differences between temporal 
and spatial axes. The discrete time-translational symmetry in photonic 
time crystals (PTCs)14,15 has been examined as a temporal analogy of 
photonic crystals, revealing the unique phenomena along the tem-
poral axis, such as momentum bandgaps and the localized tempo-
ral peak due to the Zak phase. The concept of disordered photonics 
has also been extended to the temporal axis, such as observing the 
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Although equation (2) is identical to the 1D scattering problem in 
the spatial domain32, the uniqueness of the time-varying material is in 
selecting the mathematical form of the Green’s function among several 
candidates: the Feynman, retarded and advanced propagators33. Due to 
the unidirectional flow of time, the temporal Green’s function satisfies 
causality: G(t; t′) = 0 for t < t′. To fulfil the temporal boundary condi-
tions for the displacement field and magnetic field at t = t′ (refs. 9,14), 
the analytical form of the retarded Green’s function for the temporal 
impulse becomes (Fig. 1a and Supplementary Note 2)

G(t; t′) = 1
ωb

sin[ωb(t − t′)]ϴ(t − t′), (3)

where Θ(t) is the Heaviside step function of Θ(t > 0) = 1 and Θ(t ≤ 0) = 0 
(Supplementary Note 3). The Green’s function in equation (3) can be 
separated into G(t; t′) = GFW(t; t′) + GBW(t; t′) for GFW, BW(t; t′) = ±exp[±iωb

(t − t′)]Θ(t − t′)/(2iωb), where each sign of ±ωb determines the propaga-
tion direction with the conserved k.

We emphasize that causality imposes uniqueness on the temporal 
Green’s function, that is, the coexistence of the forward (or trans-
mitted) and backward (or reflected) waves in t > t′ (Fig. 1a). Such a 
mathematical form of G(t; t′) is in sharp contrast to the spatial Green’s 
function, G(z; z′) ~ exp(ik|z − z′|), which exhibits the separate existence 
of the forward (e+ik(z − z′)) and backward (e−ik(z − z′)) waves in z > z′ and z ≤ z′, 
respectively (Fig. 1b). This uniqueness emphasizes the open-system 
nature of time-varying systems, despite the fact that the governing 
equation of equation (1) is mathematically analogous to the spatial one. 
When an external modulation to the system is applied by a time-varying 
signal power, Pin (Fig. 1c), the unique form of the causal Green’s func-
tion in a time-varying system—interfering forward and backward basis  
(Fig. 1a)—breaks the conservation of the EM energy inside the sys-
tem (Fig. 1d). In this context, the independent control of forward and 
backward scattering in temporally random heterogeneous materials 
compels a design strategy distinct from their spatial counterparts.

statistical amplification and scaling of Anderson localization in uncor-
related disorder16,17. Various wave physics, such as amplification and 
lasing18,19, effective medium theory20, Snell’s law13, spectral funnel-
ling21, supersymmetry22, parity–time symmetry23, non-reciprocity24 
and metamaterials25–28, have also revealed the unique features and 
applications of the temporal axis inspired by its spatial counterparts. 
Nonetheless, these intriguing achievements cover only the partial 
regimes in microstructural statistics of temporal modulations, such 
as order with conserved symmetries14,15,18,19,22,23,29,30, and their breaking 
with finite defects13,24 or perturbations without any correlations16,17. 
When considering abundant degrees of freedom in material micro-
structures31, further attention on the intermediate regime between 
order and uncorrelated disorder for the temporal axis is mandatory.

In this Article, we propose the concept of engineered time dis-
order, which allows for the designed manipulation of light scatter-
ing. Starting from the theoretical framework for analysing spatial 
disorder, we build its temporal analogue by incorporating causality 
in the time axis, which allows for examining the relationship between 
the time structure factor, time-translational order metric and wave 
scattering. We demonstrate that the moulding of the structure fac-
tor enables the completely independent engineering of forward 
and backward scattering. By investigating the order-to-disorder 
transition in the temporal modulation of the system, we also enable 
bandwidth-engineering of unidirectional scattering, such as time disor-
der for broadband scattering and resonance-free colour filtering. Our 
result verifies the spatial-pattern-free design of conventional optical 
functionalities and represents a great advantage of time disorder in 
bandwidth-engineering with respect to time crystals.

Results
Temporal scattering
Consider a non-magnetic, isotropic and spatially homogeneous opti-
cal material with time-modulated relative permittivity ε(t). For the 
x-polarized planewave of the displacement field D(r, t) = exψ(t)eikz, 
where r, ψ, and k are the position vector, field amplitude and wave-
number, respectively, the governing equation is6,14,16

[ d2

dt2
+ c2k2
ε(t) ]ψ(t) = 0, (1)

where c is the speed of light. Because k is conserved, according to spa-
tial translational symmetry, equation (1) is the temporal analogy of 
the one-dimensional (1D) Helmholtz equation for spatially varying 
materials, exhibiting space–time duality28 by imposing the role of the 
optical potential on ε−1(t). To investigate the regime of weak scattering, 
we express the real-valued optical potential as α(t) ≡ ε−1(t) = αb[1 + Δα(t)], 
where αb is the potential at t → ±∞. With the assumption of weak per-
turbation over a finite temporal range, the time-varying component 
αbΔα(t) becomes analogous to the weakly perturbed permittivity in 
spatial-domain problems1. Notably, as those time-varying systems are 
open systems, the energy provided by the environment, Pin(t) = duEM

0/
dt, results in the non-conservative electromagnetic (EM) field energy14,16 
uEM

0(t) = [E*(t) · D(t) + H*(t) · B(t)]/4, where E is the electric field, H is the 
magnetic field, B is the magnetic flux density and the asterik denotes 
the complex conjugation.

For a given temporal variation of the system, we employ the har-
monic incidence ψinc(t) = exp(−iωbt), where ωb = αb

1/2kc is the optical 
frequency at t → ±∞. Under the first-order Born approximation32 with 
|Δα(t)| ≪ 1, the time-domain scattering field ψsca(t) becomes

ψsca ≃ −ω2
b∫

∞

−∞
dt′Δα(t′)ψinc(t′)G(t; t′), (2)

where G(t; t′) is Green’s function for the impulse response of the tem-
poral delta function scatterer δ(t − t′) (Supplementary Note 1).
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Fig. 1 | Concept of temporal scattering as open-system responses.  
a,b, Schematics of temporal and spatial Green’s functions: Re[G(t; t′)e+ikz] (a) and 
Re[G(z; z′)e−iωt] (b). Shaded lines in a and b indicate the evolution of each Green’s 
function. c, Schematic of system modulation by signal power Pin(t) from the 
environment, representing the system gain and loss for positive and negative 
Pin, respectively. d, Energy alteration from light–matter interactions with the 
time disorder driven by Pin(t) in c. ε(t) (grey area) and uEM

0(t) (purple line) are 
the time-varying permittivity confined inside the temporal range [0, T] and the 
instantaneous electromagnetic energy density, respectively.
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From equations (2) and (3), the scattering field becomes (Sup-
plementary Note 4)

ψsca(t) =
ωb
2i [e

−iωbt∫
t

−∞
dt′Δα(t′) − e+iωbt∫

t

−∞
dt′e−2iωbt′Δα(t′)].

(4)

Although the thermodynamic limit is an ideal criterion to  
characterize the statistical features of wave–matter interactions in 
disordered systems34, the non-conservative optical energy (Fig. 1d) 
may cause unphysical results, such as the divergence of the energy 
in momentum gaps15,17. Therefore, we assume a finite-range tem-
poral variation Δα(t) with Δα(t < 0) = Δα(t > T) = 0 when examining  
equation (4). We also employ the ergodic hypothesis, that is, the  
statistical equivalence between the average over all realizations and  
the average over one statistically homogeneous realization at the 
thermodynamic limit34. Although the relationship between energy 
divergence and the common hypothesis of thermodynamic limit 
requires further study, the ergodicity allows for the homogeneous 
correlation function Ĉ(t1, t2) ≡ 〈Δα*(t1)Δα(t2)〉 = C(Δt) for 0 ≤ t1, 2 ≤ T and 
Δt = t1 − t2, where 〈.〉 denotes the ensemble average. We separate the 
ensemble-averaged scattering power after the temporal perturbation 
(t > T) into the forward (〈PFW〉) and backward (〈PBW〉) waves (Supple-
mentary Note 5) as

⟨PFW⟩ =
ω2
b
4
∫T0dt1

′∫T0dt2
′C(t1 ′ − t2 ′),

⟨PBW⟩ =
ω2
b
4
∫T0dt1

′∫T0dt2
′C(t1 ′ − t2 ′)e2iωb(t1 ′−t2 ′).

(5)

With a sufficiently broad temporal range, each power approaches 
the Fourier transform of C(Δt), that is, S(ω) = ℱ[C(Δt)] where ℱ denotes 
the Fourier transform (Supplementary Note 6):

⟨PFW⟩ ≈
ω2

bT
4 S(0), ⟨PBW⟩ ≈

ω2
bT
4 S(2ωb), (6)

where we define S(ω) as the ‘time structure factor’ governing scattering 
from temporal disorder, that is, the temporal counterpart of the static 
structure factor34,35. It is worth mentioning that S(ω) is the power spec-
tral density of the signal that determines the time-varying perturbation 
of an optical potential. While equation (6) allows for engineering for-
ward and backward scatterings, we note that the condition of suppress-
ing the forward wave 〈PFW〉 ~ 0 directly corresponds to the time-domain 
realization of the concept of hyperuniformity31,35–41, as S(ω → 0) ~ 0. It 
is worth mentioning that, although time-domain hyperuniformity has 
been observed in soft-matter physics, such as the avalanche size of the 
Oslo model42, to our knowledge, the corresponding phenomena and 
their engineering in wave physics have remained missing.

Therefore, engineering the power flows PFW, BW using time disorder 
is achieved by moulding S(ω) near ω = 0 and 2ωb. Notably, in the design 
of S(ω), three conditions should hold for C(Δt) and S(ω): the Hermiticity 
C(Δt) = C*(−Δt) with real-valued S(ω), |Re[C(Δt)]| ≤ C(Δt = 0) from the 
maximum of the correlation function, and S(ω) ≥ 0 from the autocor-
relation theorem (Supplementary Note 7). We also note that we set 
〈Δα(t)〉 = 0 to remove insuppressible scattering at the zero frequency 
limit35 S(ω = 0), which is the necessary condition to freely engineer the 
forward scattering power, PFW.

To establish the designed manipulation of light through pho-
tonic time disorder, we demonstrate the engineering of time disorder: 
unidirectional scattering for the independent control of 〈PFW〉 and 
〈PBW〉, the order-to-disorder transition for spectral manipulation, and 
momentum-selective spectral shaping. We note that there are two dif-
ferent classes of one-to-many correspondence between a scattering 
response and the realizations of disorder. First, because scattering 
phenomena are governed by S(0) and S(2ωb) for a planewave of ωb, a 
family of time disorder can be achieved by altering the overall shape of 
S(ω) while preserving S(0) and S(2ωb). Second, even for the same S(ω), 
there are an infinite number of realizations of time disorder because the 
entire landscape is essentially uniquely determined by all the orders of 
correlation functions34. Therefore, to rigorously study the relationship 
between scattering and disorder, a number of different realizations 
with a given S(ω) should be examined. In the following discussion, we 
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and SBW(ω) (bottom) with varying design parameters S0 and S2ω, respectively. The 
design parameters are represented by gradual colours (A, S0 = 0; B, S0 ≈ 2.95; C, 
S2ω = 0; D, S2ω ≈ 1.86). b, An example of the Δε(t) realizations (grey areas) and the 
corresponding scattering intensity |ψsca(t)|2 (solid lines) for the A, B and D states 
in a. t0 = 2π/ω0. c,d, Comparison of the scattering powers from the structure 
factor prediction (solid lines) and rigorous TD-TMM analysis (error bars) for 
each ensemble with different design parameters S0 and S2ω in a and b, showing 

suppression of the backward (c) and forward (d) scattering. The top and bottom 
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Filled circles and error bars denote the ensemble average from the TD-TMM 
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respectively. Structure factors [SFW, BW(ω), S0, 2ω], scattering field (ψsca) and 
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focus on the first origin in examining a family of disorder, as well as 
conducting the statistical analysis due to the second origin.

Unidirectional scattering
We demonstrate the unidirectional scattering achieved by suppressing 
S(0) or S(2ωb). We set a time scale t0 and assume incident frequency 
ωb = ω0. We set the structure factor functions SFW(ω) and SBW(ω) for the 
forward and backward scatterings, which are designed in the frequency 
ranges [−2ω0, 2ω0] and [−3ω0, 3ω0], respectively, and zero elsewhere. 
The structure factors SFW, BW(ω) in this scenario are modulated by the 
design parameters S0 = SFW(0) and S2ω = SBW(2ωb), respectively, while 
satisfying the continuity and C1 smoothness as well as the statistical 
bounds for ε(t) (Supplementary Note 8).

Figure 2a shows the designed SFW(ω) and SBW(ω) for different values 
of S0 and S2ω, respectively. With the corresponding C(Δt) from SFW, BW(ω), 
we generate a set of ε(t) realizations through the multivariate Gaussian 
process (Supplementary Notes 7 and 9). Three example realizations are 
depicted in Fig. 2b for the suppressions of (1) both forward and back-
ward (case A), (2) backward only (case B) and (3) forward only (case D), 
which have the corresponding time structure factor shown in Fig. 2a.

For each case, an ensemble of 104 realizations is generated, and 
their scattering responses are examined using the time-domain transfer 
matrix method (TD-TMM)16,43. Figure 2c,d shows that the ensemble 
average of the rigorous TMM results (error bars) provides good agree-
ment with the S(ω)-based prediction with the Born approximation 
(lines). Engineering temporal modulation using the time structure 
factor allows for completely independent manipulation of temporal 
scattering: unidirectional scattering only with forward (case B) or 
backward (case D) propagations or scattering-free temporal variations 
(cases A and C).

Engineered time disorder for spectral manipulation
The main advantage of utilizing disordered systems in wave physics is 
the ability to manipulate multiple wave quantities with different sensi-
tivities to material phases31. Such intricate wave–matter interactions 
allow for the alteration of the target wave quantity while preserving 
other ones, as shown in the independent manipulation of localization 
and spectral responses in spatial domains6,44. In this context, we focus 
on the independent control of two wave properties—scattering and 
spectral responses—using photonic time disorder.

In designing temporal systems through the language of the time 
structure factor, ordered systems (for example, photonic time crys-
tals15) are depicted by a set of Bragg peaks, indicating certain harmonic 
frequencies at which the system interacts with an incident wave. In con-
trast, time disorder close to the Poisson process41 shows a broadband 
structure factor that guarantees a continuum frequency response; at 
the extreme, the uncorrelated Poisson disorder possesses the structure 
factor of an infinite plateau. Using such a clear distinction between 
order and uncorrelated disorder and the relationship between the 
structure factor and scattering, we explore the intermediate regime 
between two extremes in photonic time disorder.

To quantify the transition between order and uncorrelated disor-
der, we introduce the transition parameter ξ for the structure factor 
S(ω): from ξ = 0 mimicking crystals to ξ = 1 for a near-Poisson case. We 
set the extreme case of the structure factors SC(ω) and SP(ω) for the 
crystal and near-Poisson state, respectively, defining the transition 
between them (Fig. 3a and Supplementary Note 10) as

S(ω) = (1 − ξ)SC(ω) +
1
2 [SP (

ω − 2ω0
ξ

) + SP (
ω + 2ω0

ξ
)]. (7)

Figure 3b shows the structure factors obtained from different 
mixing of SC(ω) and SP(ω), targeting the suppression of forward power 
PFW ~ 0 with S(0) = 0. As the transition from the A to D states occurs, 
the heights of the Bragg peaks from SC(ω) at ω ≠ 2ω0 decrease, while 

the bumps SP(ω) centred at ω = ±2ω0 (Fig. 3b, inset) are continuously 
broadened. Equation (7) allows for maintaining the integral of S(ω) 
over the frequency domain to restrict the average fluctuation in the 
time-domain realizations. The designed transition therefore enables 
the characterization of time disorder solely depending on the ‘pattern’ 
of disorder, not on the magnitude of the fluctuation.

Figure 3c shows examples of the realization of time disorder for 
different ξ values in Fig. 3b, all of which are designed to derive backward 
scattering only. The transition parameter ξ qualitatively describes the 
temporal material phase transition from nearly crystalline to nearly 
uncorrelated disorder. To characterize each disorder more quantita-
tively, we introduce the time-translational order metric τ:

τ = t−10 ∫
4ω0

−4ω0

dω |||S(ω) −
𝜋𝜋δ2
4ω0

|||

2

, (8)

where ±4ω0 denotes the range of non-zero S(ω) (Supplementary Note 10).  
Analogous to its original definition in the spatial domain35,41, τ char-
acterizes the distance of a given temporal evolution from the Pois-
son process, describing how much a given ε(t) is ordered in the time 
domain. As shown in Fig. 3d, the designed backward scattering from 
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equation (6) and the resulting TD-TMM show good agreement, while 
better agreement is achieved when we leave out the infinite temporal 
range approximation by using equation (5).

The most important difference between crystals and uncorrelated 
disorder can be found in their spectral responses. As shown in Fig. 3e,f, 
the change in material phases between order and uncorrelated disorder 
provides a designed manipulation of the bandwidth of temporal modu-
lations while preserving the target scattering response: the suppression 
of forward scattering. Remarkably, near-Poisson time disorder (case D) 
guarantees almost ±10% range of spectrum bandwidth for the suppres-
sion of forward scattering and constant backward scattering, improv-
ing the bandwidth 40 times compared to that of the near-crystal one 
(case A). Therefore, the use of randomness in the temporal modulation 
enables a notable bandwidth enhancement and thus the noise-robust 
signal-processing preserving optical functionalities.

Momentum-selective spectral shaping
Through Figs. 2 and 3 we have demonstrated control of the scattering 
directivity under monochromatic conditions, as well as its spectral engi-
neering through an order-to-disorder transition. Based on this result, 
we show a methodology for the filtering of light waves—the temporal 
‘resonant-less’ colour filter—using a platform with spatial translational 
symmetry. The proposed approach is in sharp contrast to conventional 
platforms for light filtering, such as multilayers45 or resonators46.

As an example of this application, we consider the propagation of 
a pulse and its interaction with the designed photonic time disorder, 
which leads to unidirectional and bandpass scattering. Because the for-
ward scattering is governed by S(0) regardless of the light momentum 
k, the momentum-resolved operation for forward scattering is prohib-
ited. We thus focus on the filtering of backward waves while suppressing 
forward waves, which filters out the range of ‘wave’ momenta k by the 
corresponding ‘material’ temporal frequencies |ω| = 2c|k| ∈ [ωmin, ωmax] 
(= [ω0/2, ω0] in Fig. 4a). Notably, the non-zero lower bound ωmin, which 
imposes a stricter condition on suppressing the forward wave, com-
prises the temporal realization of the stealthy hyperuniformity35,41, as 
S(|ω| < ωmin) ~ 0. We also set S(ω) ~ ω−2 dependency in the target range to 
compensate for the ω2 dependency of the scattering power (equation (6)).  

The temporal correlation and a sample realization of a given structure 
factor are shown in Fig. 4b,c.

The initial displacement field D(z, t = 0) is a real-valued scalar 
function that satisfies D(k) = D*(−k). We assume a Gaussian pulse 
D(z, t = 0) = exp[−(z/σz)2/2]. The time evolution of the field through 
the time disorder filter becomes

D(z, t) = ∫
∞

−∞

dk
2𝜋𝜋
D(k, t = 0)eikzψtot(t; k), (9)

where ψtot(t; k) is the single-component response of the incident 
planewave ψinc(t) = e−ikct. Snapshots of the pulse evolution are shown 
in Fig. 4d, exhibiting +z propagation (pink arrow) and a scattered tail 
behind it.

The evolutions of scattered fields in real- and k-space are illus-
trated in Fig. 4e,f, respectively. After the modulation, the generated 
backscattered field propagates along the −z-direction (blue arrow). 
Figure 4f and its ω-axis representation (Fig. 4g) clearly demonstrate 
the filtering functionality, which preserves the envelope shape of the 
original incident pulse while suppressing the designed band stop range 
ck/ω0 ∈ [−1/4, 1/4] (Supplementary Video 1).

The mechanism of the suggested temporal colour filter is funda-
mentally distinct from conventional optical filters, which utilize the 
bounded momentum responses through spatial inhomogeneity (for 
example, using mirrors, scatterers or resonators) and the following 
constraint on spectral responses through dispersion relations. In 
contrast, the proposed temporal colour filter does not require spatial 
inhomogeneity. Although the momentum of light is preserved through 
spatial translational symmetry, the spectral responses are filtered 
through broken temporal translational symmetry, which is the nature 
of time-varying open systems.

Discussion
Recently, several important studies have explored time disorder16,17, 
revealing the growth of the statistical intensity of waves with log-normal 
distributions and temporal Anderson localization, both of which are 
obtained with uncorrelated disorder. In contrast, the importance of our 
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result is the bridging of temporal light scattering and correlated time 
disorder, which allows for the deterministic engineering of scattering 
direction, bandwidth and spectral shaping.

In terms of time-dependent perturbation theory, our statistical 
approach corresponds to a weak perturbation with the spectral transi-
tion amplitude S(ω) that gives rise to the transition from incident (initial 
state, ωb) to forward or backward scattering (first-order perturbations, 
±ωb) with energy differences S(Δω = −2ωb or 0), respectively, similar 
to Fermi’s golden rule. This is consistent with the so-called time cor-
relation function in the Green–Kubo relationship47,48 that describes 
the transport coefficient in fluid49 or thermal50 systems. Although the 
listed phenomena all share the universal linear response theory in both 
classical and quantum physics, direct application of the essence of the 
Green–Kubo relation to temporal light scattering is demonstrated, and 
it serves as a toolkit for dynamical photonic systems.

Notably, time-varying wave systems can be realized experimen-
tally through time-varying transmission lines (TVTLs)9,18,51–54 in the 
microwave regime. Because transmission lines are ideal platforms 
for describing 1D wave propagations, TVTLs with temporal modula-
tions achieved via loaded LC resonators or varactor diodes allow for 
reproducing intriguing phenomena in time-varying wave systems. 
TVTLs are also expected to be a suitable platform for the practical 
implementation of our disordered systems, as they only require 
free-form control of time-varying parameters. Notably, the realiza-
tion of photonic time disorder beyond the microwave regime is a 
much more challenging issue. Although the unidirectional scattering 
with suppressed forward scattering can be realized independently 
of the modulation speed (S(0) = 0), the engineering of backward 
scattering S(2ωb) requires ultrafast modulations, which is a contro-
versial topic in recent studies on photonic momentum gaps55. For 
example, to achieve considerable modulation of backward scat-
tering in the infrared or visible range, femtosecond modulation of 
optical refractive indices is necessary. All-optical modulation based 
on second-order55 or third-order optical nonlinearity is a possible 
mechanism. To increase the effective material perturbation in strong 
light–matter interactions, the use of two-dimensional materials56, 
plasmonic platforms57 or epsilon-near-zero metamaterials58 can be 
candidate platforms.

To summarize, we have developed the patternless realization of 
EM scattering in temporally disordered media. Starting from the ana-
lytical formulation of wave scattering with the time structure factor, 
we have demonstrated moulding of structure factors for engineered 
scattering. This top–down approach enables the design of modula-
tion signals for unidirectional scattering in spatially homogeneous 
systems. By examining the order-to-disorder transition in the tem-
poral domain, we have also developed bandwidth-engineering while 
preserving unidirectional scattering, which enables the realization of 
resonance-free colour filters. To develop a more concrete theoretical 
foundation of disordered photonics in the time domain, exploring 
the uniqueness and criteria of photonic time disorder, such as the 
energy non-conservative nature of momentum gaps with hyperuni-
formity35 and stealth31 and its relation to the thermodynamic limit 
and the necessity of finite-temporal-range analysis, will be a further 
research topic. In terms of engineered disorder, unidirectional scat-
tering achieved with photonic time disorder will provide extended 
design freedom in realizing optical non-reciprocity59,60. To break Lor-
entz reciprocity60, the generalization of photonic time disorder to the 
spatio-temporal domain will be necessary. Bandwidth-engineering 
through the order-to-disorder transition, as shown in our work, will 
then be applicable for the realization of broadband optical isolation.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
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