Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced singular jet formation in oil-coated bubble bursting


Bubble-bursting aerosols have a key role in mass and momentum transfer across interfaces. Previous studies report that the bursting of a millimetre-sized bare bubble at an aqueous surface produces jet drops with a typical size on the order of 100 μm. Here we show that jet drops can be as small as a few micrometres when the bursting bubble is coated by a thin oil layer. The faster and smaller jet drops result from the singular dynamics of the oil-coated cavity collapse. The air–oil–water compound interface offers a distinct damping mechanism to smooth out the precursor capillary waves during cavity collapse, leading to a more efficient focusing of the dominant wave and thus allowing singular jets over a much wider parameter space than that of a bare bubble. We develop a theoretical explanation for the parameter limits of the singular jet regime by considering the interplay between inertia, surface tension and viscous effects. Contaminated bubbles are widely observed, therefore previously unrecognized fast and small contaminant-laden jet drops may contribute to the aerosolization and airborne transmission of bulk substances.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oil-coated bubble bursting at an aqueous surface.
Fig. 2: Characterization of jets produced from oil-coated bubble bursting.
Fig. 3: Cavity collapse and capillary wave propagation.
Fig. 4: Regime map of singular jets and jet drop generation by collective oil-coated bubble bursting.

Data availability

Source data are provided with this paper and are available via Figshare at All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used for the Basilisk simulation in this study are available at The codes for bubble shape calculation are available via Github at


  1. Gonnermann, H. M. & Manga, M. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321–356 (2007).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bird, J. C., De Ruiter, R., Courbin, L. & Stone, H. A. Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759–762 (2010).

    Article  ADS  Google Scholar 

  3. Feng, J. et al. Nanoemulsions obtained via bubble-bursting at a compound interface. Nat. Phys. 10, 606–612 (2014).

    Article  Google Scholar 

  4. Veron, F. Ocean spray. Annu. Rev. Fluid Mech. 47, 507–538 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  5. Dollet, B., Marmottant, P. & Garbin, V. Bubble dynamics in soft and biological matter. Annu. Rev. Fluid Mech. 51, 331–355 (2019).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Oratis, A. T., Bush, J. W., Stone, H. A. & Bird, J. C. A new wrinkle on liquid sheets: turning the mechanism of viscous bubble collapse upside down. Science 369, 685–688 (2020).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Liger-Belair, G. & Cilindre, C. Recent progress in the analytical chemistry of champagne and sparkling wines. Annu. Rev. Anal. Chem. 14, 21–46 (2021).

    Article  Google Scholar 

  8. Deike, L. Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu. Rev. Fluid Mech. 54, 191–224 (2022).

    Article  MATH  ADS  Google Scholar 

  9. Anguelova, M. D. Big potential for tiny droplets. Nat. Geosci. 14, 543–544 (2021).

    Article  ADS  Google Scholar 

  10. Ji, B., Yang, Z. & Feng, J. Compound jetting from bubble bursting at an air-oil-water interface. Nat. Commun. 12, 6305 (2021).

    Article  ADS  Google Scholar 

  11. Spiel, D. E. On the births of jet drops from bubbles bursting on water surfaces. J. Geophys. Res. Oceans 100, 4995–5006 (1995).

    Article  ADS  Google Scholar 

  12. Ma, Z. et al. Characteristics and threats of particulate matter from zinc electrolysis manufacturing facilities. J. Clean. Prod. 259, 120874 (2020).

    Article  Google Scholar 

  13. Murphy, D. et al. An in-depth survey of the oil spill literature since 1968: long term trends and changes since deepwater horizon. Mar. Pollut. Bull. 113, 371–379 (2016).

    Article  Google Scholar 

  14. Trainic, M. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 1, 64 (2020).

    Article  ADS  Google Scholar 

  15. Wang, X. et al. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proc. Natl Acad. Sci. USA 114, 6978–6983 (2017).

    Article  ADS  Google Scholar 

  16. Wilson, T. W. et al. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525, 234–238 (2015).

    Article  ADS  Google Scholar 

  17. Ji, B., Singh, A. & Feng, J. Water-to-air transfer of nano/microsized particulates: enrichment effect in bubble bursting jet drops. Nano Lett. 22, 5626–5634 (2022).

    Article  ADS  Google Scholar 

  18. Bourouiba, L. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53, 473–508 (2021).

    Article  MATH  ADS  Google Scholar 

  19. McRae, O., Mead, K. R. & Bird, J. C. Aerosol agitation: quantifying the hydrodynamic stressors on particulates encapsulated in small droplets. Phys. Rev. Fluids 6, L031601 (2021).

    Article  ADS  Google Scholar 

  20. Bourouiba, L. Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Eng. 23, 547–577 (2021).

    Article  Google Scholar 

  21. Blanchard, D. C. & Syzdek, L. Mechanism for the water-to-air transfer and concentration of bacteria. Science 170, 626–628 (1970).

    Article  ADS  Google Scholar 

  22. Johansen, C., Todd, A. C. & MacDonald, I. R. Time series video analysis of bubble release processes at natural hydrocarbon seeps in the Northern Gulf of Mexico. Mar. Petrol. Geol. 82, 21–34 (2017).

    Article  ADS  Google Scholar 

  23. Behrens, S. H. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Curr. Opin. Colloid Interf. Sci. 50, 101384 (2020).

    Article  Google Scholar 

  24. Visser, C. W., Amato, D. N., Mueller, J. & Lewis, J. A. Architected polymer foams via direct bubble writing. Adv. Mater. 31, 1904668 (2019).

    Article  Google Scholar 

  25. Blanco-Rodríguez, F. J. & Gordillo, J. On the jets produced by drops impacting a deep liquid pool and by bursting bubbles. J. Fluid Mech. 916, A37 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. Lhuissier, H. & Villermaux, E. Bursting bubble aerosols. J. Fluid Mech. 696, 5–44 (2012).

    Article  MATH  ADS  Google Scholar 

  27. Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401–404 (2000).

    Article  ADS  Google Scholar 

  28. Bartolo, D., Josserand, C. & Bonn, D. Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96, 124501 (2006).

    Article  ADS  Google Scholar 

  29. Gañán-Calvo, A. M. Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys. Rev. Lett. 119, 204502 (2017).

    Article  ADS  Google Scholar 

  30. Lai, C. Y., Eggers, J. & Deike, L. Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett. 121, 144501 (2018).

    Article  ADS  Google Scholar 

  31. Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000–3008 (2002).

    Article  MATH  ADS  Google Scholar 

  32. Gordillo, J. & Rodríguez-Rodríguez, J. Capillary waves control the ejection of bubble bursting jets. J. Fluid Mech. 867, 556–571 (2019).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Brasz, C. F. et al. Minimum size for the top jet drop from a bursting bubble. Phys. Rev. Fluids 3, 074001 (2018).

    Article  ADS  Google Scholar 

  34. Deike, L. et al. Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603 (2018).

    Article  ADS  Google Scholar 

  35. Blanco-Rodríguez, F. J. & Gordillo, J. On the sea spray aerosol originated from bubble bursting jets. J. Fluid Mech. 886, R2 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  36. Michon, G. J., Josserand, C. & Séon, T. Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2, 023601 (2017).

    Article  ADS  Google Scholar 

  37. Yang, Z. Q., Tian, Y. S. & Thoroddsen, S. T. Multitude of dimple shapes can produce singular jets during the collapse of immiscible drop-impact craters. J. Fluid Mech. 904, A19 (2020).

    Article  ADS  Google Scholar 

  38. Thoroddsen, S. T., Takehara, K., Nguyen, H. & Etoh, T. Singular jets during the collapse of drop-impact craters. J. Fluid Mech. 848, R3 (2018).

    Article  ADS  Google Scholar 

  39. Popinet, S. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Berny, A., Deike, L., Popinet, S. & Séon, T. Size and speed of jet drops are robust to initial perturbations. Phys. Rev. Fluids 7, 013602 (2022).

    Article  ADS  Google Scholar 

  41. Sanjay, V., Lohse, D. & Jalaal, M. Bursting bubble in a viscoplastic medium. J. Fluid Mech. 922, A2 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  42. Krishnan, S., Hopfinger, E. J. & Puthenveettil, B. A. On the scaling of jetting from bubble collapse at a liquid surface. J. Fluid Mech. 822, 791 (2017).

    Article  ADS  Google Scholar 

  43. Gañán-Calvo, A. M. & López-Herrera, J. M. On the physics of transient ejection from bubble bursting. J. Fluid Mech. 929, A12 (2021).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Lamb, H. Hydrodynamics 4th edn (Cambridge University Press, 1916).

  45. Lee, J. S. et al. Size limits the formation of liquid jets during bubble bursting. Nat. Commun. 2, 367 (2011).

    Article  ADS  Google Scholar 

  46. Raja, D. K., Hopfinger, E. & Das, S. Conditions of inertial-viscous transition and related jetting in large cavity collapse. Phys. Rev. Fluids 5, 124002 (2020).

    Article  ADS  Google Scholar 

  47. Gralton, J., Tovey, E., McLaws, M. L. & Rawlinson, W. D. The role of particle size in aerosolised pathogen transmission: a review. J. Infect. 62, 1–13 (2011).

    Article  Google Scholar 

  48. Ginn, O. et al. Detection and quantification of enteric pathogens in aerosols near open wastewater canals in cities with poor sanitation. Environ. Sci. Technol. 55, 14758–14771 (2021).

    Article  ADS  Google Scholar 

  49. Lou, M. et al. The bioaerosols emitted from toilet and wastewater treatment plant: a literature review. Environ. Sci. Pollut. Res. 28, 2509–2521 (2021).

    Article  Google Scholar 

  50. Law, R. C., Lai, J. H., Edwards, D. J. & Hou, H. COVID-19: research directions for non-clinical aerosol-generating facilities in the built environment. Buildings 11, 282 (2021).

    Article  Google Scholar 

  51. Ji, B., Yang, Z. & Feng, J. Oil-coated bubble formation from submerged coaxial orifices. Phys. Rev. Fluids 6, 033602 (2021).

    Article  ADS  Google Scholar 

  52. Ji, B., Singh, A. & Feng, J. Oil column pinch-off controls the oil fraction of the oil-coated bubble. Phys. Fluids 33, 103316 (2021).

    Article  ADS  Google Scholar 

  53. Néel, B. & Deike, L. Collective bursting of free-surface bubbles, and the role of surface contamination. J. Fluid Mech. 917, A46 (2021).

    Article  MATH  ADS  Google Scholar 

  54. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  55. Kan, Y., Meng, J., Guo, Y., Li, X. & Gao, D. Humidity sensor based on cobalt chloride/cellulose filter-paper for respiration monitoring. J. Electroanal. Chem. 895, 115423 (2021).

    Article  Google Scholar 

  56. Popinet, S. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336–358 (2015).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Beetham, E., Kench, P. S., O’Callaghan, J. & Popinet, S. Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu. J. Geophys. Res. Oceans 121, 311–326 (2016).

    Article  ADS  Google Scholar 

  58. Popinet, S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572–600 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Brasz, C. F., Berny, A. & Bird, J. C. Threshold for discretely self-similar satellite drop formation from a retracting liquid cone. Phys. Rev. Fluids 3, 104002 (2018).

    Article  ADS  Google Scholar 

  60. Marcotte, F., Michon, G. J., Séon, T. & Josserand, C. Ejecta, corolla, and splashes from drop impacts on viscous fluids. Phys. Rev. Lett. 122, 014501 (2019).

    Article  ADS  Google Scholar 

  61. Fudge, B. D., Cimpeanu, R. & Castrejón-Pita, A. A. Dipping into a new pool: the interface dynamics of drops impacting onto a different liquid. Phys. Rev. E 104, 065102 (2021).

    Article  ADS  Google Scholar 

  62. Agbaglah, G. Breakup of thin liquid sheets through hole–hole and hole–rim merging. J. Fluid Mech. 911, A23 (2021).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. Sanjay, V., Sen, U., Kant, P. & Lohse, D. Taylor-Culick retractions and the influence of the surroundings. J. Fluid Mech. 948, A14 (2022).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  64. Afkhami, S. et al. Transition in a numerical model of contact line dynamics and forced dewetting. J. Comput. Phys. 374, 1061–1093 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  65. Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).

    Article  ADS  Google Scholar 

  66. de Gennes, P. G. et al. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Vol. 315 (Springer, 2004).

  67. Mou, Z. et al. Singular jets in compound drop impact. Preprint at (2021).

  68. Zhang, F., Thoraval, M. J., Thoroddsen, S. T. & Taborek, P. Partial coalescence from bubbles to drops. J. Fluid Mech. 782, 209–239 (2015).

    Article  ADS  Google Scholar 

  69. Longuet-Higgins, M. S. Capillary rollers and bores. J. Fluid Mech. 240, 659–679 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics Vol. 6 (Pergamon, 1986).

  71. Levich, V. G. Physicochemical Hydrodynamics (Prentice-Hall, 1962).

  72. Whitham, G. B. Linear and Nonlinear Waves (John Wiley & Sons, 1974).

  73. Jenkins, A. D. & Jacobs, S. J. Wave damping by a thin layer of viscous fluid. Phys. Fluids 9, 1256–1264 (1997).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  74. Denner, F. Frequency dispersion of small-amplitude capillary waves in viscous fluids. Phys. Rev. E 94, 023110 (2016).

    Article  MathSciNet  ADS  Google Scholar 

Download references


We thank H. A. Stone at Princeton University for helpful discussions about the paper, S. Hilgenfeldt at the University of Illinois at Urbana-Champaign for discussions on wave modelling and V. Sanjay at the University of Twente for fruitful suggestions for the simulations. This work is partially supported by the American Chemical Society Petroleum Research Fund under grant number 61574-DNI9 (to J.F.)

Author information

Authors and Affiliations



B.J. and J.F. conceived the project. B.J. and J.F. designed the experiments. Z.Y. and B.J. conducted the experiments and analysed the results. Z.Y., B.J. and J.F. conducted the theoretical analysis. J.T.A. conducted the simulations with Basilisk. Z.Y. conducted other numerical analyses. J.T.A. and Z.Y. post-processed the simulation results. Z.Y., B.J., J.T.A. and J.F. discussed the results and wrote the paper.

Corresponding author

Correspondence to Jie Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Radu Cimpeanu and Samantha McBride for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experiment setup for the imaging of oil-coated bubble bursting.

a, Schematic drawings of the experiment setup. The oil-coated bubbles are generated from coaxial orifices, and observed with two high-speed cameras simultaneously. b, Zoom-in image of a typical oil-coated bubble at a free surface with μo = 19 mPa s and ψo = 6%.

Extended Data Fig. 2 Variation of oil volume composition in top jet drop from bursting of oil-coated bubbles with different oil volume fractions.

The data points denote the oil volume composition of the top jet drop for oil-coated bubble bursting (with 4.6 mPa s oil), obtained from simulations. Here ϕo represents oil volume composition in the top jet drop. The dashed line denotes the minimum oil volume fraction to produce an oil-only top jet drop estimated from experiments.

Extended Data Fig. 3 Bursting of bare bubbles of R ≈ 2 mm at liquid surfaces with increasing Ohw only produces non-singular jets.

A bare bubble with R = 2.1 ± 0.3 mm bursts at the surface of water (Ohw = 0.0026, a), 50 wt% glycerin-water solution (Ohw = 0.015, b), 4.6 mPa s silicone oil (Ohw = 0.025, c), and 70 wt% glycerin-water solution (Ohw = 0.06, d). The scale bar represents 1 mm.

Extended Data Fig. 4 Dimensionless jet velocity and radius from oil-coated bubble bursting.

a, Dimensionless jet velocity vj/vce as a function of oil volume fraction ψo at different oil viscosities μo. For the pure water case, vce = vcw is used. b, Dimensionless jet radius rj/R as a function of ψo. The hollow markers at the left vertical axes of a, b represent the case for a bare bubble of the same size bursting in pure water.

Extended Data Fig. 5 Comparison of the numerically calculated static shape of oil-coated bubbles (red dashed curves) with experimental images.

The static shapes of the bubbles with μo = 1.8 mPa s and ψo = 2.3% (a), 4.3% (b), and 12.6% (c) resting at the free surface prior to bursting are well captured by the numerical solutions with the fluid properties listed in Extended Data Table 1. The scale bar represents 1 mm.

Extended Data Fig. 6 Comparison of the experiment and simulation for oil-coated bubble bursting.

Left of each panel shows the experimental high-speed images of an oil-coated bubble bursting. Here μo = 19 mPa s, ψo = 4.2%. t = 0 represents the instant when a hole nucleates in the bubble cap. Right of each panel shows the simulation snapshots of corresponding cavity shape. The white, black, and grey regimes denote air, oil, and water phases, respectively. The scale bar represents 1 mm.

Extended Data Fig. 7 Characterization of the SW propagation for oil-coated bubble bursting.

a-b, Capillary wave propagation during the bursting of an oil-coated bubble with μo = 1.8 mPa s and ψo = 4.2% (a) and a bare bubble (b). White, black and grey colors represent air, oil, and water phases, respectively. The bubble radius R = 2 mm. The scale bar represents 1 mm. c, Angular wave position θ as a function of t* for oil-coated bubble bursting with R = 2 mm and μo = 4.6 mPa s at different ψo. d, Dimensionless SW wavelength λs/R as a function of ψo at θ = π/6 for oil-coated bubbles with μo = 4.6 mPa s.

Extended Data Fig. 8 Bubble bursting jet with different bulk liquid viscosities.

a-b, Regime map of jet singularity regarding oil fraction ψo and bulk liquid viscosity μw (or \({{{{\rm{Oh}}}}}_{{{{\rm{w}}}}}={\mu }_{{{{\rm{w}}}}}/{({\rho }_{{{{\rm{w}}}}}{{{R}}}{\gamma }_{{{{\rm{wa}}}}})}^{1/2}\)), with an coating oil viscosity of 1.8 mPa s (a) and 4.6 mPa s (b). c, Experimental snapshots of a singular jet produced by bubble bursting with μw = 22.5 mPa s, μo = 4.6 mPa s, and ψo = 1.0%. The red dashed line marks the bubble cap before rupturing. The scale bar represents 1 mm.

Extended Data Table 1 Physical properties of the liquids used in the experiments

Supplementary information

Supplementary Information

Supplementary Discussion.

Supplementary Video 1

High-speed side view of a singular jet from an oil-coated bubble bursting with μo = 4.6 mPa s and ψo = 10%. R = 2.0 mm.

Supplementary Video 2

High-speed side view of a non-singular jet from a bare bubble with R = 1.9 mm bursting in pure water.

Supplementary Video 3

High-speed side view of the bottom of an oil-coated bubble bursting μo = 1.8 mPa s and ψo = 4.2%, showing capillary wave separation at the compound interface and tiny bubble entrapment at jet formation. R = 2.1 mm.

Supplementary Video 4

Simulation of a bare bubble with R = 2 mm bursting in water. Here white, grey and black regions represent air, oil and water, respectively.

Supplementary Video 5

Simulation of an oil-coated bubble bursting in water, with R = 2 mm, μo = 0.9 mPa s, and ψo = 4.2%. Here white, grey and black regions represent air, oil and water, respectively.

Supplementary Video 6

Simulation of an oil-coated bubble bursting in water, with R = 2 mm, μo = 4.6 mPa s, and ψo = 4.2%. Here white, grey and black regions represent air, oil and water, respectively.

Source data

Source Data Figs. 2–4

All source data for Figs. 2–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ji, B., Ault, J.T. et al. Enhanced singular jet formation in oil-coated bubble bursting. Nat. Phys. 19, 884–890 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing