Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymorphic crystalline wetting layers on crystal surfaces

Abstract

Analogous to surface premelting, we show that a crystal surface can undergo a pre-solid–solid transition. This means that it develops a thin polymorphic crystalline layer before reaching the solid–solid transition temperature if two crystals can form a low-energy coherent interface. We confirm this in simulations and colloid experiments at single-particle resolution. The power-law increase of surface layer thickness is analogous to premelting. Different kinetics and reversibilities of surface-crystal growth are observed in various systems. Surface crystals exist not only under thermal equilibrium but also during melting, crystallization and grain coarsening. Furthermore, the premelting and pre-solid–solid transition can coexist, resulting in double surface wetting layers. We hypothesize that such surface phenomena also exist in some atomic and molecular crystals, and this could provide a mechanism to tune the properties of the materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coherent interface and schematic set-up.
Fig. 2: A 4□ crystal on the surface of a bulk 4 crystal.
Fig. 3: The 4□ crystals at surface–GB intersections facilitate bulk polycrystal annealing in simulation of 12-6 LJ particles and form in NIPA colloids.
Fig. 4: A transient surface 4□ crystal formed during the melting (NIPA colloid) and crystallization (PMMA colloid) of a bulk 4 crystal.
Fig. 5: Double (□ and liquid) wetting layers at the interface of bulk crystal and vapour at thermal equilibrium.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

Code availability

The computer codes used in this paper are provided with this paper.

References

  1. Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    Article  ADS  Google Scholar 

  2. Kouchi, A., Furukawa, Y. & Kuroda, T. X-ray-diffraction pattern of quasi-liquid layer on ice crystal surface. J. Phys. 48, 675–677 (1987).

    Google Scholar 

  3. Li, Y. & Somorjai, G. A. Surface premelting of ice. J. Phys. Chem. C 111, 9631–9637 (2007).

    Article  Google Scholar 

  4. Slarter, B. & Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019).

    Article  Google Scholar 

  5. Heni, M. & Lowen, H. Surface freezing on patterned substrates. Phys. Rev. Lett. 85, 3668–3671 (2000).

    Article  ADS  Google Scholar 

  6. Auer, S. & Frenkel, D. Line tension controls wall-induced crystal nucleation in hard-sphere colloids. Phys. Rev. Lett. 91, 015703 (2003).

    Article  ADS  Google Scholar 

  7. Dijkstra, M. Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys. Rev. Lett. 93, 108303 (2004).

    Article  ADS  Google Scholar 

  8. Wu, X. Z. et al. Surface tension measurements of surface freezing in liquid normal alkanes. Science 261, 1018–1021 (1993).

    Article  ADS  Google Scholar 

  9. Frank, F. C. I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958).

    Article  Google Scholar 

  10. Miyano, K. Wall-induced pretransitional birefringence: a new tool to study boundary aligning forces in liquid crystals. Phys. Rev. Lett. 43, 51–54 (1979).

    Article  ADS  Google Scholar 

  11. Somorjai, G. A. Surface reconstruction and catalysis. Annu. Rev. Phys. Chem. 45, 721–751 (1994).

    Article  ADS  Google Scholar 

  12. Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).

    Article  ADS  Google Scholar 

  13. Gasser, U., Weeks, E. R., Schofied, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2002).

    Article  ADS  Google Scholar 

  14. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  ADS  Google Scholar 

  15. Wang, Z., Wang, F., Peng, Y., Zheng, Z. & Han, Y. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–99 (2012).

    Article  ADS  Google Scholar 

  16. Savage, J. R., Blair, D. W., Levine, A. J., Guyer, R. A. & Dinsmore, A. D. Imaging the sublimation dynamics of colloidal crystallites. Science 314, 795–798 (2006).

    Article  ADS  Google Scholar 

  17. Nguyen, V., Faber, S., Hu, Z., Wegdam, G. & Schall, P. Controlling colloidal phase transitions with critical Casimir forces. Nat. Commun. 4, 1584 (2013).

    Article  ADS  Google Scholar 

  18. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  19. Peng, Y. et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015).

    Article  ADS  Google Scholar 

  20. Casey, M. T. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

    Article  ADS  Google Scholar 

  21. Li, B. et al. Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 531, 485–488 (2016).

    Article  ADS  Google Scholar 

  22. Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of critical Casimir forces. Nature 451, 172–175 (2008).

    Article  ADS  Google Scholar 

  23. Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    Article  ADS  Google Scholar 

  24. Pieranski, P., Strzelecki, L. & Pansu, B. Thin colloidal crystals. Phys. Rev. Lett. 50, 900–903 (1983).

    Article  ADS  Google Scholar 

  25. Fortini, A. & Dijkstra, M. Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. J. Phys. Condens. Matter 18, L371–L378 (2006).

    Article  ADS  Google Scholar 

  26. Schmidt, M. & Lowen, H. Freezing between two and three dimensions. Phys. Rev. Lett. 76, 4552–4555 (1996).

    Article  ADS  Google Scholar 

  27. Mitchell, T. B. et al. Direct observations of structural phase transitions in planar crystallized ion plasmas. Science 282, 1290–1293 (1998).

    Article  ADS  Google Scholar 

  28. Narasimhan, S. & Ho, T. L. Wigner-crystal phases in bilayer quantum Hall systems. Phys. Rev. B 52, 12291–12306 (1995).

    Article  ADS  Google Scholar 

  29. Zhu, Z. et al. Crystal face dependent intrinsic wettability of metal oxide surfaces. Natl Sci. Rev. 8, nwaa166 (2021).

    Article  Google Scholar 

  30. Lipowsky, R. Critical surface phenomena at first-order bulk transitions. Phys. Rev. Lett. 49, 1575–1577 (1982).

    Article  ADS  Google Scholar 

  31. Broughton, J. Q. & Gilmer, G. H. Interface melting: simulations of surfaces and grain boundaries at high temperatures. J. Phys. Chem. 91, 6347–6359 (1987).

    Article  Google Scholar 

  32. Frenken, J. W. M. & van der Veen, J. F. Observation of surface melting. Phys. Rev. Lett. 54, 134–137 (1985).

    Article  ADS  Google Scholar 

  33. Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase Transformations in Metals and Alloys (CRC Press, 2008).

  34. Arai, S. & Tanaka, H. Surface-assisted single-crystal formation of charged colloids. Nat. Phys. 13, 503–509 (2017).

    Article  Google Scholar 

  35. Gibbs, J. W. Scientific Papers: Thermodynamics Vol. 1 (Dover Publications, 1961).

  36. Qi, X. & Zhang, S. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  37. Xie, Y. P., Zhang, X. J. & Liu, Z. P. Graphite to diamond: origin for kinetics selectivity. J. Am. Chem. Soc. 139, 2545–2548 (2017).

    Article  Google Scholar 

  38. Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).

    Article  ADS  Google Scholar 

  39. Wang, C., Zhang, X. & Liu, Y. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation. Nanoscale 6, 5329–5337 (2014).

    Article  ADS  Google Scholar 

  40. Wentorf Jr, R. H. & Kasper, J. S. Two new forms of silicon. Science 139, 338–339 (1963).

    Article  ADS  Google Scholar 

  41. Aufray, B. et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010).

    Article  ADS  Google Scholar 

  42. Feng, L., Laderman, B., Sacanna, S. & Chaikin, P. Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nat. Mater. 14, 61–65 (2015).

    Article  ADS  Google Scholar 

  43. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

    Article  ADS  Google Scholar 

  44. Behrens, S. H. & Grier, D. G. Pair interaction of charged colloidal spheres near a charged wall. Phys. Rev. E 64, 050401 (2001).

    Article  ADS  Google Scholar 

  45. Polin, M., Grier, D. G. & Han, Y. Colloidal electrostatic interactions near a conducting surface. Phys. Rev. E 76, 041406 (2007).

    Article  ADS  Google Scholar 

  46. Louis, A., Allahyarov, E., Lowen, H. & Roth, R. Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion. Phys. Rev. E 65, 061407 (2002).

    Article  ADS  Google Scholar 

  47. Horowitz, V. R., Janowitz, L. A., Modic, A. L., Heiney, P. A. & Collings, P. J. Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Phys. Rev. E 72, 041710 (2005).

    Article  ADS  Google Scholar 

  48. Asghar, K., Qasim, M., Dharmapuri, G. & Das, D. Investigation on a smart nanocarrier with a mesoporous magnetic core and thermo-responsive shell for co-delivery of doxorubicin and curcumin: a new approach towards combination therapy of cancer. RSC Adv. 7, 28802–28818 (2017).

    Article  ADS  Google Scholar 

  49. Yunker, P., Zhang, Z., Aptowicz, K. B. & Yodh, A. G. Irreversible rearrangements, correlated domains, and local structure in aging glasses. Phys. Rev. Lett. 103, 115701 (2009).

    Article  ADS  Google Scholar 

  50. Kokufuta, E. Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking. Langmuir 21, 10004–10015 (2005).

    Article  Google Scholar 

  51. Jiang, H. R., Wada, H., Yoshinaga, N. & Sano, M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys. Rev. Lett. 102, 208301 (2009).

    Article  ADS  Google Scholar 

  52. Wang, X., Ramírez-Hinestrosa, S., Dobnikar, J. & Daan, F. The Lennard–Jones potential: when (not) to use it. Phys. Chem. Chem. Phys. 22, 10624–10633 (2020).

    Article  Google Scholar 

  53. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2010).

Download references

Acknowledgements

We thank D. Frenkel, J. Dobnikar, W. Li, Q. Zhang and K. Qiao for useful discussions, X. Xu for part of the computational facility and Y. Zhang and Y. Wang for the NIPA colloid. This work was supported by RGC-CRF grant no. C6016-20G, Guangdong Basic and Applied Basic Research Foundation grant no. 2020B1515120067 and Chinese National Science Foundation through grant no. 12104495.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and B.L. proposed the existence of the surface-crystal phenomena. Y.H., B.L. and X.W. conceived and designed the research. X.W. carried out the simulations. B.L. and M.L. conducted the experiments with PMMA and NIPA colloids, respectively. B.L., X.W. and M.L. analysed the data, with help from Y.H. X.W., Y.H. and B.L. wrote the paper. Y.H. supervised and supported the work. All authors discussed the results.

Corresponding authors

Correspondence to Xipeng Wang, Bo Li or Yilong Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Xiaolin Wang, Hyerim Hwang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results

Supplementary Video 1

The initial formation of the surface 4PMMA colloidal crystal. The 4□ layer covers the 4 surface, corresponding to Fig. 2a,b.

Supplementary Video 2

The growth of the surface 4PMMA colloidal crystal. 4 → 4□, corresponding to Fig. 2c–e.

Supplementary Video 3

The bulk 4 NIPA colloidal crystal transforms to a surface 4crystal layer by layer. The temperature is changed from 33.5 °C to 34 °C at t = 0. Particles involving the transformation are coloured in red for lattice and green for □ lattice in the left panel. 50 × real time.

Supplementary Video 4

Shrinkage of the 4crystal by increasing the temperature. The surface 4□ crystal transforms back to bulk 4 PMMA colloidal crystal when the temperature increases from 25.5 °C to 26.0 °C, corresponding to Supplementary Fig. 4.

Supplementary Video 5

The four layers in the z direction exhibit the same behaviours during the pre-s–s transition (simulation). 12-6 LJ particles at t = 2.0 × 105 after the temperature is changed from T = 0.485 to T = 0.489 at t = 0, corresponding to Fig. 2h–k. Particles in the xz, yz and xy plane are shown at 60%, 60% and 90% of their true size to be clearly displayed.

Supplementary Video 6

The four layers in the z direction exhibit the same behaviours during the pre-ss transition (experiment). The NIPA sample is scanned along the z direction by changing the focal plane at 30 °C. The moving objective slightly perturbs the colloid.

Supplementary Video 7

Coalescence of two 30° GBs at T = 0.485 in simulation. This corresponds to Fig. 3 and Supplementary Fig. 15.

Supplementary Video 8

The melting process of a bulk crystal involves a transient surface 4crystal. The temperature is changed from 33 °C to 34 °C at t = 0 in the NIPA colloid, corresponding to Fig. 4a–c.

Supplementary Video 9

The crystallization of a bulk crystal involves a transient surface 4crystal. The temperature is changed from 33 °C to 27 °C in the PMMA colloid, corresponding to Fig. 4d–f. 1.57 × real time.

Supplementary Video 10

Double layers on the surface of a 4 NIPA colloidal crystal. The liquid and 4□ surface wetting layers are stable after more than 150 min at 33 °C, corresponding to Fig. 5a.

Supplementary Code 1

1_lammps_MD_code.lj and 2_extract_configuration_from_lammpsfile.f are similation data for Figs. 25. 3_average_configuration.f and 4_calculate_displacement.f are simulation data for Fig. 2k.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, B., Li, M. et al. Polymorphic crystalline wetting layers on crystal surfaces. Nat. Phys. 19, 700–705 (2023). https://doi.org/10.1038/s41567-022-01923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01923-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing