Abstract
Correlations between entangled photons are a key ingredient for testing fundamental aspects of quantum mechanics and an invaluable resource for quantum technologies. However, scattering from a dynamic medium typically scrambles and averages out such correlations. Here we show that multiply scattered entangled photons reflected from a dynamic complex medium remain partially correlated. In experiments and full-wave simulations we observe enhanced correlations, within an angular range determined by the transport mean free path, which prevail over disorder averaging. Theoretical analysis reveals that this enhancement arises from the interference between scattering trajectories, in which the photons leave the sample and are then virtually reinjected back into it. These paths are the quantum counterpart of the paths that lead to the coherent backscattering of classical light. This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Code availability
Simulations performed in this work use the augmented partial factorization method implemented in software MESTI, available at https://github.com/complexphoton/MESTI.m.
References
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Ekert, A. & Renner, R. The ultimate physical limits of privacy. Nature 507, 443–447 (2014).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).
Lum, D. J. et al. Witnessing the survival of time-energy entanglement through biological tissue and scattering media. Biomed. Opt. Express 12, 3658–3670 (2021).
Candé, M., Goetschy, A. & Skipetrov, S. Transmission of quantum entanglement through a random medium. Europhys. Lett. 107, 54004 (2014).
Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).
Pors, B.-J., Monken, C., Eliel, E. R. & Woerdman, J. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Express 19, 6671–6683 (2011).
Ibrahim, A. H., Roux, F. S., McLaren, M., Konrad, T. & Forbes, A. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013).
Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).
Leonhard, N. D., Shatokhin, V. N. & Buchleitner, A. Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015).
Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge Univ. Press, 2006).
van Rossum, M. C. W. & Nieuwenhuizen, T. M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313 (1999).
Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).
Carminati, R. & Schotland, J. C. Principles of Scattering and Transport of Light (Cambridge Univ. Press, 2021).
Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).
Mello, P. A., Akkermans, E. & Shapiro, B. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett. 61, 459 (1988).
Kuga, Y. & Ishimaru, A. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A 1, 831–835 (1984).
Van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985).
Wolf, P.-E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985).
Akkermans, E., Wolf, P. & Maynard, R. Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett. 56, 1471 (1986).
Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).
Di Giuseppe, G. et al. Einstein-podolsky-rosen spatial entanglement in ordered and anderson photonic lattices. Phys. Rev. Lett. 110, 150503 (2013).
Gilead, Y., Verbin, M. & Silberberg, Y. Ensemble-averaged quantum correlations between path-entangled photons undergoing anderson localization. Phys. Rev. Lett. 115, 133602 (2015).
Beenakker, C., Venderbos, J. & Van Exter, M. Two-photon speckle as a probe of multi-dimensional entanglement. Phys. Rev. Lett. 102, 193601 (2009).
Ott, J. R., Mortensen, N. A. & Lodahl, P. Quantum interference and entanglement induced by multiple scattering of light. Phys. Rev. Lett. 105, 090501 (2010).
Candé, M. & Skipetrov, S. E. Quantum versus classical effects in two-photon speckle patterns. Phys. Rev. A 87, 013846 (2013).
Schotland, J. C., Cazé, A. & Norris, T. B. Scattering of entangled two-photon states. Opt. Lett. 41, 444–447 (2016).
Lodahl, P. & Lagendijk, A. Transport of quantum noise through random media. Phys. Rev. Lett. 94, 153905 (2005).
Lodahl, P., Mosk, A. & Lagendijk, A. Spatial quantum correlations in multiple scattered light. Phys. Rev. Lett. 95, 173901 (2005).
Smolka, S., Huck, A., Andersen, U. L., Lagendijk, A. & Lodahl, P. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light. Phys. Rev. Lett. 102, 193901 (2009).
Smolka, S., Ott, J. R., Huck, A., Andersen, U. L. & Lodahl, P. Continuous-wave spatial quantum correlations of light induced by multiple scattering. Phys. Rev. A 86, 033814 (2012).
Peeters, W., Moerman, J. & Van Exter, M. Observation of two-photon speckle patterns. Phys. Rev. Lett. 104, 173601 (2010).
Di Lorenzo Pires, H., Woudenberg, J. & van Exter, M. P. Statistical properties of two-photon speckles. Phys. Rev. A 85, 033807 (2012).
van Exter, M. P., Woudenberg, J., Di Lorenzo Pires, H. & Peeters, W. H. Bosonic, fermionic, and anyonic symmetry in two-photon random scattering. Phys. Rev. A 85, 033823 (2012).
Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).
Jakeman, E. Enhanced backscattering through a deep random phase screen. J. Opt. Soc. Am. A 5, 1638–1648 (1988).
Dogariu, A., Boreman, G. D. & Dogariu, M. Enhanced backscattering from a volume-scattering medium behind a phase screen. Opt. Lett. 20, 1665–1667 (1995).
Schwartz, C. & Dogariu, A. Enhanced backscattering of optical vortex fields. Opt. Lett. 30, 1431–1433 (2005).
Wiersma, D. S., van Albada, M. P. & Lagendijk, A. Coherent backscattering of light from amplifying random media. Phys. Rev. Lett. 75, 1739 (1995).
Yoo, K., Tang, G. & Alfano, R. Coherent backscattering of light from biological tissues. Appl. Optics 29, 3237–3239 (1990).
Derode, A., Mamou, V., Padilla, F., Jenson, F. & Laugier, P. Dynamic coherent backscattering in a heterogeneous absorbing medium: application to human trabecular bone characterization. Appl. Phys. Lett. 87, 114101 (2005).
Bromberg, Y., Redding, B., Popoff, S. & Cao, H. Control of coherent backscattering by breaking optical reciprocity. Phys. Rev. A 93, 023826 (2016).
Labeyrie, G. et al. Coherent backscattering of light by cold atoms. Phys. Rev. Lett. 83, 5266 (1999).
Huang, J. et al. Anomalous coherent backscattering of light from opal photonic crystals. Phys. Rev. Lett. 86, 4815 (2001).
Scalia, P. S., Muskens, O. L. & Lagendijk, A. Weak localization of photon noise. New J. Phys. 15, 105009 (2013).
Fazio, B. et al. Coherent backscattering of Raman light. Nat. Photonics 11, 170–176 (2017).
Bayer, G. & Niederdränk, T. Weak localization of acoustic waves in strongly scattering media. Phys. Rev. Lett. 70, 3884 (1993).
Larose, E., Margerin, L., Van Tiggelen, B. & Campillo, M. Weak localization of seismic waves. Phys. Rev. Lett. 93, 048501 (2004).
Jendrzejewski, F. et al. Coherent backscattering of ultracold atoms. Phys. Rev. Lett. 109, 195302 (2012).
Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717 (2004).
Belinskii, A. & Klyshko, D. Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. J. Exp. Theor. Phys. 78, 259–262 (1994).
Walborn, S., Monken, C., Pádua, S. & Souto Ribeiro, P. Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010).
Smolka, S. Quantum Correlations and Light Localization in Disordered Nanophotonic Structures. PhD thesis, Technical Univ. Denmark (2010).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000).
Rogozkin, D. B. & Cherkasov, M. Y. Long-range intensity correlations in wave reflection from a disordered medium. Phys. Rev. B 51, 12256 (1995).
Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).
Lin, HC., Wang, Z. & Hsu, C.W. Fast multi-source nanophotonic simulations using augmented partial factorization. Nat. Comput. Sci. 2, 815–822 (2022).
van Tiggelen, B. A., Wiersma, D. A. & Lagendijk, A. Self-consistent theory for the enhancement factor in coherent backscattering. Europhys. Lett. 30, 1 (1995).
Amic, E., Luck, J. M. & Nieuwenhuizen, T. M. Anisotropic multiple scattering in diffusive media. J. Phys. A 29, 4915 (1996).
Muskens, O. L., Venn, P., van der Beek, T. & Wellens, T. Partial nonlinear reciprocity breaking through ultrafast dynamics in a random photonic medium. Phys. Rev. Lett. 108, 223906 (2012).
Law, C. & Eberly, J. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004).
Farjadpour, A. et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt. Lett. 31, 2972–2974 (2006).
Gedney, S. in Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (eds Taflove, A. & Hagness, S. C.) Ch. 7 (Artech House, 2005).
Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731 (1997).
Acknowledgements
Funding: Zuckerman STEM Leadership Program, the Israel Science Foundation (grant no. 2497/21), National Science Foundation (ECCS-2146021), LABEX WIFI (Laboratory of Excellence within the French Program ‘Investments for the Future’) under references ANR-10-LABX-24 and ANR-10-IDEX-0001-02 PSL*.
Author information
Authors and Affiliations
Contributions
M.S., O.L. and Y.B. conceived the idea and designed the experiments. M.S. built the experimental setup, performed the measurements and developed the theory for the double-passage configuration. A.G. developed the theory in the multiple-scattering regime and Fisher information analysis. H.-C.L. and C.W.H. performed the numerical simulations. All authors analysed the results and contributed to the manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Mauro Paternostro, Bienvenu Ndagano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–12 and Discussion.
Source data
Source Data Fig. 2
Source data for Fig. 2b,f.
Source Data Fig. 3
Source data for Fig. 3.
Source Data Fig. 4
Source data for Fig. 4b,c.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Safadi, M., Lib, O., Lin, HC. et al. Coherent backscattering of entangled photon pairs. Nat. Phys. (2023). https://doi.org/10.1038/s41567-022-01895-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41567-022-01895-3