Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent backscattering of entangled photon pairs

Subjects

Abstract

Correlations between entangled photons are a key ingredient for testing fundamental aspects of quantum mechanics and an invaluable resource for quantum technologies. However, scattering from a dynamic medium typically scrambles and averages out such correlations. Here we show that multiply scattered entangled photons reflected from a dynamic complex medium remain partially correlated. In experiments and full-wave simulations we observe enhanced correlations, within an angular range determined by the transport mean free path, which prevail over disorder averaging. Theoretical analysis reveals that this enhancement arises from the interference between scattering trajectories, in which the photons leave the sample and are then virtually reinjected back into it. These paths are the quantum counterpart of the paths that lead to the coherent backscattering of classical light. This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical and quantum coherent backscattering.
Fig. 2: Experimental observation of two-photon and one-photon coherent backscattering.
Fig. 3: 2p-CBS and 1p-CBS widths against the diffuser–mirror spacing L.
Fig. 4: Two-photon coherent backscattering from disordered samples in multiple-scattering regime.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Simulations performed in this work use the augmented partial factorization method implemented in software MESTI, available at https://github.com/complexphoton/MESTI.m.

References

  1. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).

    ADS  MathSciNet  Google Scholar 

  2. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  3. Ekert, A. & Renner, R. The ultimate physical limits of privacy. Nature 507, 443–447 (2014).

    ADS  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Google Scholar 

  5. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Google Scholar 

  6. Lum, D. J. et al. Witnessing the survival of time-energy entanglement through biological tissue and scattering media. Biomed. Opt. Express 12, 3658–3670 (2021).

    Google Scholar 

  7. Candé, M., Goetschy, A. & Skipetrov, S. Transmission of quantum entanglement through a random medium. Europhys. Lett. 107, 54004 (2014).

    ADS  Google Scholar 

  8. Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).

    Google Scholar 

  9. Pors, B.-J., Monken, C., Eliel, E. R. & Woerdman, J. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Express 19, 6671–6683 (2011).

    ADS  Google Scholar 

  10. Ibrahim, A. H., Roux, F. S., McLaren, M., Konrad, T. & Forbes, A. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013).

    ADS  Google Scholar 

  11. Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).

    ADS  Google Scholar 

  12. Leonhard, N. D., Shatokhin, V. N. & Buchleitner, A. Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015).

    ADS  MathSciNet  Google Scholar 

  13. Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge Univ. Press, 2006).

  14. van Rossum, M. C. W. & Nieuwenhuizen, T. M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313 (1999).

    ADS  Google Scholar 

  15. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

  16. Carminati, R. & Schotland, J. C. Principles of Scattering and Transport of Light (Cambridge Univ. Press, 2021).

  17. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).

    ADS  Google Scholar 

  18. Mello, P. A., Akkermans, E. & Shapiro, B. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett. 61, 459 (1988).

    ADS  Google Scholar 

  19. Kuga, Y. & Ishimaru, A. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A 1, 831–835 (1984).

    ADS  Google Scholar 

  20. Van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985).

    ADS  Google Scholar 

  21. Wolf, P.-E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985).

    ADS  Google Scholar 

  22. Akkermans, E., Wolf, P. & Maynard, R. Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett. 56, 1471 (1986).

    ADS  Google Scholar 

  23. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).

    ADS  Google Scholar 

  24. Di Giuseppe, G. et al. Einstein-podolsky-rosen spatial entanglement in ordered and anderson photonic lattices. Phys. Rev. Lett. 110, 150503 (2013).

    Google Scholar 

  25. Gilead, Y., Verbin, M. & Silberberg, Y. Ensemble-averaged quantum correlations between path-entangled photons undergoing anderson localization. Phys. Rev. Lett. 115, 133602 (2015).

    ADS  Google Scholar 

  26. Beenakker, C., Venderbos, J. & Van Exter, M. Two-photon speckle as a probe of multi-dimensional entanglement. Phys. Rev. Lett. 102, 193601 (2009).

    ADS  Google Scholar 

  27. Ott, J. R., Mortensen, N. A. & Lodahl, P. Quantum interference and entanglement induced by multiple scattering of light. Phys. Rev. Lett. 105, 090501 (2010).

    ADS  Google Scholar 

  28. Candé, M. & Skipetrov, S. E. Quantum versus classical effects in two-photon speckle patterns. Phys. Rev. A 87, 013846 (2013).

    ADS  Google Scholar 

  29. Schotland, J. C., Cazé, A. & Norris, T. B. Scattering of entangled two-photon states. Opt. Lett. 41, 444–447 (2016).

    ADS  Google Scholar 

  30. Lodahl, P. & Lagendijk, A. Transport of quantum noise through random media. Phys. Rev. Lett. 94, 153905 (2005).

    ADS  Google Scholar 

  31. Lodahl, P., Mosk, A. & Lagendijk, A. Spatial quantum correlations in multiple scattered light. Phys. Rev. Lett. 95, 173901 (2005).

    ADS  Google Scholar 

  32. Smolka, S., Huck, A., Andersen, U. L., Lagendijk, A. & Lodahl, P. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light. Phys. Rev. Lett. 102, 193901 (2009).

    ADS  Google Scholar 

  33. Smolka, S., Ott, J. R., Huck, A., Andersen, U. L. & Lodahl, P. Continuous-wave spatial quantum correlations of light induced by multiple scattering. Phys. Rev. A 86, 033814 (2012).

    ADS  Google Scholar 

  34. Peeters, W., Moerman, J. & Van Exter, M. Observation of two-photon speckle patterns. Phys. Rev. Lett. 104, 173601 (2010).

    ADS  Google Scholar 

  35. Di Lorenzo Pires, H., Woudenberg, J. & van Exter, M. P. Statistical properties of two-photon speckles. Phys. Rev. A 85, 033807 (2012).

    ADS  Google Scholar 

  36. van Exter, M. P., Woudenberg, J., Di Lorenzo Pires, H. & Peeters, W. H. Bosonic, fermionic, and anyonic symmetry in two-photon random scattering. Phys. Rev. A 85, 033823 (2012).

    ADS  Google Scholar 

  37. Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).

    ADS  Google Scholar 

  38. Jakeman, E. Enhanced backscattering through a deep random phase screen. J. Opt. Soc. Am. A 5, 1638–1648 (1988).

    ADS  Google Scholar 

  39. Dogariu, A., Boreman, G. D. & Dogariu, M. Enhanced backscattering from a volume-scattering medium behind a phase screen. Opt. Lett. 20, 1665–1667 (1995).

    ADS  Google Scholar 

  40. Schwartz, C. & Dogariu, A. Enhanced backscattering of optical vortex fields. Opt. Lett. 30, 1431–1433 (2005).

    ADS  Google Scholar 

  41. Wiersma, D. S., van Albada, M. P. & Lagendijk, A. Coherent backscattering of light from amplifying random media. Phys. Rev. Lett. 75, 1739 (1995).

    ADS  Google Scholar 

  42. Yoo, K., Tang, G. & Alfano, R. Coherent backscattering of light from biological tissues. Appl. Optics 29, 3237–3239 (1990).

    ADS  Google Scholar 

  43. Derode, A., Mamou, V., Padilla, F., Jenson, F. & Laugier, P. Dynamic coherent backscattering in a heterogeneous absorbing medium: application to human trabecular bone characterization. Appl. Phys. Lett. 87, 114101 (2005).

    ADS  Google Scholar 

  44. Bromberg, Y., Redding, B., Popoff, S. & Cao, H. Control of coherent backscattering by breaking optical reciprocity. Phys. Rev. A 93, 023826 (2016).

    ADS  Google Scholar 

  45. Labeyrie, G. et al. Coherent backscattering of light by cold atoms. Phys. Rev. Lett. 83, 5266 (1999).

    ADS  Google Scholar 

  46. Huang, J. et al. Anomalous coherent backscattering of light from opal photonic crystals. Phys. Rev. Lett. 86, 4815 (2001).

    ADS  Google Scholar 

  47. Scalia, P. S., Muskens, O. L. & Lagendijk, A. Weak localization of photon noise. New J. Phys. 15, 105009 (2013).

    ADS  Google Scholar 

  48. Fazio, B. et al. Coherent backscattering of Raman light. Nat. Photonics 11, 170–176 (2017).

    ADS  Google Scholar 

  49. Bayer, G. & Niederdränk, T. Weak localization of acoustic waves in strongly scattering media. Phys. Rev. Lett. 70, 3884 (1993).

    ADS  Google Scholar 

  50. Larose, E., Margerin, L., Van Tiggelen, B. & Campillo, M. Weak localization of seismic waves. Phys. Rev. Lett. 93, 048501 (2004).

    ADS  Google Scholar 

  51. Jendrzejewski, F. et al. Coherent backscattering of ultracold atoms. Phys. Rev. Lett. 109, 195302 (2012).

    ADS  Google Scholar 

  52. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717 (2004).

    ADS  Google Scholar 

  53. Belinskii, A. & Klyshko, D. Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. J. Exp. Theor. Phys. 78, 259–262 (1994).

    ADS  Google Scholar 

  54. Walborn, S., Monken, C., Pádua, S. & Souto Ribeiro, P. Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010).

    ADS  Google Scholar 

  55. Smolka, S. Quantum Correlations and Light Localization in Disordered Nanophotonic Structures. PhD thesis, Technical Univ. Denmark (2010).

  56. Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000).

    ADS  Google Scholar 

  57. Rogozkin, D. B. & Cherkasov, M. Y. Long-range intensity correlations in wave reflection from a disordered medium. Phys. Rev. B 51, 12256 (1995).

    ADS  Google Scholar 

  58. Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).

    ADS  Google Scholar 

  59. Lin, HC., Wang, Z. & Hsu, C.W. Fast multi-source nanophotonic simulations using augmented partial factorization. Nat. Comput. Sci. 2, 815–822 (2022).

  60. van Tiggelen, B. A., Wiersma, D. A. & Lagendijk, A. Self-consistent theory for the enhancement factor in coherent backscattering. Europhys. Lett. 30, 1 (1995).

    ADS  Google Scholar 

  61. Amic, E., Luck, J. M. & Nieuwenhuizen, T. M. Anisotropic multiple scattering in diffusive media. J. Phys. A 29, 4915 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  62. Muskens, O. L., Venn, P., van der Beek, T. & Wellens, T. Partial nonlinear reciprocity breaking through ultrafast dynamics in a random photonic medium. Phys. Rev. Lett. 108, 223906 (2012).

    ADS  Google Scholar 

  63. Law, C. & Eberly, J. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004).

    ADS  Google Scholar 

  64. Farjadpour, A. et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt. Lett. 31, 2972–2974 (2006).

    ADS  Google Scholar 

  65. Gedney, S. in Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (eds Taflove, A. & Hagness, S. C.) Ch. 7 (Artech House, 2005).

  66. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731 (1997).

    ADS  Google Scholar 

Download references

Acknowledgements

Funding: Zuckerman STEM Leadership Program, the Israel Science Foundation (grant no. 2497/21), National Science Foundation (ECCS-2146021), LABEX WIFI (Laboratory of Excellence within the French Program ‘Investments for the Future’) under references ANR-10-LABX-24 and ANR-10-IDEX-0001-02 PSL*.

Author information

Authors and Affiliations

Authors

Contributions

M.S., O.L. and Y.B. conceived the idea and designed the experiments. M.S. built the experimental setup, performed the measurements and developed the theory for the double-passage configuration. A.G. developed the theory in the multiple-scattering regime and Fisher information analysis. H.-C.L. and C.W.H. performed the numerical simulations. All authors analysed the results and contributed to the manuscript preparation.

Corresponding author

Correspondence to Yaron Bromberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Mauro Paternostro, Bienvenu Ndagano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Discussion.

Source data

Source Data Fig. 2

Source data for Fig. 2b,f.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safadi, M., Lib, O., Lin, HC. et al. Coherent backscattering of entangled photon pairs. Nat. Phys. 19, 562–568 (2023). https://doi.org/10.1038/s41567-022-01895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01895-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing