Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasiparticles, flat bands and the melting of hydrodynamic matter


The concept of quasiparticles—long-lived low-energy particle-like excitations—has become a cornerstone of condensed quantum matter, where it explains a variety of emergent many-body phenomena such as superfluidity and superconductivity. Here we use quasiparticles to explain the collective behaviour of a classical system of hydrodynamically interacting particles in two dimensions. In the disordered phase of this matter, measurements reveal a subpopulation of long-lived particle pairs. Modelling and simulation of the ordered crystalline phase identify the pairs as quasiparticles, emerging at the Dirac cones of the spectrum. The quasiparticles stimulate supersonic pairing avalanches, bringing about the melting of the crystal. In hexagonal crystals, where the intrinsic three-fold symmetry of the hydrodynamic interaction matches that of the crystal, the spectrum forms a flat band dense with ultra-slow, low-frequency phonons whose collective interactions induce a much sharper melting transition. Altogether, these findings demonstrate the usefulness of concepts from quantum matter theory in understanding many-body physics in classical dissipative settings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrodynamic pairing in disordered and ordered phases.
Fig. 2: Pair-induced melting in the square lattice.
Fig. 3: Quasiparticle avalanche.
Fig. 4: Flat bands and monkey saddles in hexagonal crystals.
Fig. 5: Melting in the hexagonal lattice.
Fig. 6: Melting by flat-band modes.

Data availability

Data supporting the figures within this paper are deposited at

Code availability

The code used for the analysis of the experiment, analytic modelling and simulations in this study is available from the corresponding authors upon reasonable request.


  1. Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941).

  2. Noziéres, P. Theory of Interacting Fermi Systems (W.A. Benjamin, 1964).

  3. Schrieffer, J. R. Theory of Superconductivity (W.A. Benjamin, 1964).

  4. Weinberg, S. Quasiparticles and the Born series. Phys. Rev. 131, 440 (1963).

  5. Hybertsen, M. S. & Louie, S. G. First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418 (1985).

    ADS  Google Scholar 

  6. Wölfle, P. Quasiparticles in condensed matter systems. Rep. Prog. Phys. 81, 032501 (2018).

    ADS  MathSciNet  Google Scholar 

  7. Pines, D. Elementary Excitations in Solids (W.A. Benjamin, 1963).

  8. Schrieffer, J. R. What is a quasi-particle? J. Res. Natl Bur. Stand. A 74A, 537 (1970).

  9. Bradlyn, B. et al. Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  MATH  Google Scholar 

  10. Venema, L. et al. The quasiparticle zoo. Nat. Phys. 12, 1085–1089 (2016).

    Google Scholar 

  11. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1 (2021).

  12. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Google Scholar 

  13. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged laughlin quasiparticle. Phys. Rev. Lett. 79, 2526 (1997).

    ADS  Google Scholar 

  14. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

  15. Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Google Scholar 

  16. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007).

    Google Scholar 

  17. Wilczek, F. Majorana returns. Nat. Phys. 5, 614–618 (2009).

    Google Scholar 

  18. Aguado, R. Majorana quasiparticles in condensed matter. Riv. del Nuovo Cim. 40, 523 (2017).

  19. Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189 (1953).

    ADS  MathSciNet  MATH  Google Scholar 

  20. Efremov, D. V. et al. Multicritical Fermi surface topological transitions. Phys. Rev. Lett. 123, 207202 (2019).

    ADS  Google Scholar 

  21. Volovik, G. E. Topological Lifshitz transitions. Low Temp. Phys. 43, 47 (2017).

  22. Volovik, G. E. Flat band in topological matter. J. Supercond. Novel Magn. 26, 2887 (2013).

  23. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).

    Google Scholar 

  24. Yuan, N. F. Q., Isobe, H. & Fu, L. Magic of high-order van Hove singularity. Nat. Commun. 10, 5769 (2019).

    ADS  Google Scholar 

  25. Rosenzweig, P., Karakachian, H., Marchenko, D., Küster, K. & Starke, U. Overdoping graphene beyond the van Hove singularity. Phys. Rev. Lett. 125, 176403 (2020).

    ADS  Google Scholar 

  26. Maimaiti, W., Andreanov, A. & Flach, S. Flat-band generator in two dimensions. Phys. Rev. B 103, 165116 (2021).

    ADS  Google Scholar 

  27. Kopnin, N. B., Heikkilä, T. T. & Volovik, G. E. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503 (2011).

    ADS  Google Scholar 

  28. Yao, H. & Yang, F. Topological odd-parity superconductivity at type-II two-dimensional van Hove singularities. Phys. Rev. B 92, 035132 (2015).

    ADS  Google Scholar 

  29. Mondaini, R., Batrouni, G. G. & Grémaud, B. Pairing and superconductivity in the flat band: Creutz lattice. Phys. Rev. B 98, 155142 (2018).

    ADS  Google Scholar 

  30. Isobe, H., Yuan, N. F. Q. & Fu, L. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).

    Google Scholar 

  31. Bergholtz, E. J. & Liu, Z. Topological flat band models and fractional chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  32. Tang, E. & Fu, L. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nat. Phys. 10, 964–969 (2014).

    Google Scholar 

  33. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2009).

  34. Christos, M., Sachdev, S. & Scheurer, M. S. Superconductivity, correlated insulators, and wess-zumino-witten terms in twisted bilayer graphene. Proc. Natl. Acad. Sci. USA 117, 29543 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  35. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).

    ADS  Google Scholar 

  36. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    ADS  Google Scholar 

  37. Marchenko, D. et al. Extremely flat band in bilayer graphene. Sci Adv 4, eaau0059 (2018).

    ADS  Google Scholar 

  38. Mao, J. et al. Evidence of flat bands and correlated states in buckled graphene superlattices. Nature 584, 215–220 (2020).

    ADS  Google Scholar 

  39. Tlusty, T. Exceptional topology in ordinary soft matter. Phys. Rev. E 104, 025002 (2021).

    ADS  MathSciNet  Google Scholar 

  40. Beatus, T., Tlusty, T. & Bar-Ziv, R. Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2, 743–748 (2006).

    Google Scholar 

  41. Beatus, T., Bar-Ziv, R. H. & Tlusty, T. The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516, 103 (2012).

  42. Beatus, T., Shani, I., Bar-Ziv, R. H. & Tlusty, T. Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier. Chem. Soc. Rev. 46, 5620 (2017).

  43. Liron, N. & Mochon, S. Stokes flow for a stokeslet between two parallel flat plates. J. Engrg. Math. 10, 287 (1976).

  44. Cui, B., Diamant, H., Lin, B. & Rice, S. A. Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension. Phys. Rev. Lett. 92, 258301 (2004).

    ADS  Google Scholar 

  45. Tlusty, T. Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets. Macromolecules 39, 3927 (2006).

  46. Beatus, T., Bar-Ziv, R. & Tlusty, T. Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Phys. Rev. Lett. 99, 124502 (2007).

    ADS  Google Scholar 

  47. Baron, M., Bławzdziewicz, J. & Wajnryb, E. Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel. Phys. Rev. Lett. 100, 174502 (2008).

    ADS  Google Scholar 

  48. Beatus, T., Bar-Ziv, R. & Tlusty, T. One-dimensional microfluidic crystals far from equilibrium: acoustic phonons, instabilities and confinement. Prog. Theor. Phys. 175, 123 (2008).

  49. Beatus, T., Tlusty, T. & Bar-Ziv, R. Burgers shock waves and sound in a 2D microfluidic droplets ensemble. Phys. Rev. Lett. 103, 114502 (2009).

    ADS  Google Scholar 

  50. Champagne, N., Lauga, E. & Bartolo, D. Stability and non-linear response of 1D microfluidic-particle streams. Soft Matter 7, 11082 (2011).

    ADS  Google Scholar 

  51. Liu, B., Goree, J. & Feng, Y. Waves and instability in a one-dimensional microfluidic array. Phys. Rev. E 86, 046309 (2012).

    ADS  Google Scholar 

  52. Desreumaux, N., Caussin, J.-B., Jeanneret, R., Lauga, E. & Bartolo, D. Hydrodynamic fluctuations in confined particle-laden fluids. Phys. Rev. Lett. 111, 118301 (2013).

    ADS  Google Scholar 

  53. Uspal, W. E., Burak Eral, H. & Doyle, P. S. Engineering particle trajectories in microfluidic flows using particle shape. Nat. Commun. 4, 2666 (2013).

    ADS  Google Scholar 

  54. Shani, I., Beatus, T., Bar-Ziv, R. H. & Tlusty, T. Long-range orientational order in two-dimensional microfluidic dipoles. Nat. Phys. 10, 140–144 (2014).

    Google Scholar 

  55. Nagar, H. & Roichman, Y. Collective excitations of hydrodynamically coupled driven colloidal particles. Phys. Rev. E 90, 042302 (2014).

    ADS  Google Scholar 

  56. Shen, B., Ricouvier, J., Malloggi, F. & Tabeling, P. Designing colloidal molecules with microfluidics. Adv. Sci. 3, 1600012 (2016).

    Google Scholar 

  57. Tsang, A. C. H. & Kanso, E. Density shock waves in confined microswimmers. Phys. Rev. Lett. 116, 048101 (2016).

    ADS  Google Scholar 

  58. Del Giudice, F., D’Avino, G. & Maffettone, P. L. Microfluidic formation of crystal-like structures. Lab Chip 21, 2069 (2021).

    Google Scholar 

  59. Pompano, R. R., Liu, W., Du, W. & Ismagilov, R. F. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu. Rev. Anal. Chem. 4, 59 (2011).

  60. Ziman, J. M. Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford Univ. Press, 1960).

  61. Shtyk, A., Goldstein, G. & Chamon, C. Electrons at the monkey saddle: a multicritical lifshitz point. Phys. Rev. B 95, 035137 (2017).

    ADS  Google Scholar 

  62. Gofron, K. et al. Observation of an “extended” van Hove singularity in YBa2Cu4O8 by ultrahigh energy resolution angle-resolved photoemission. Phys. Rev. Lett. 73, 3302 (1994).

    ADS  Google Scholar 

  63. McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010).

    ADS  Google Scholar 

  64. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

  65. Stimson, M., Jeffery, G. B. & Filon, L. N. G. The motion of two spheres in a viscous fluid. Proc. R. Soc. A 111, 110 (1926).

  66. Goldman, A. J., Cox, R. G. & Brenner, H. The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Eng. Sci. 21, 1151 (1966).

  67. Sarig, I., Starosvetsky, Y. & Gat, A. D. Interaction forces between microfluidic droplets in a hele-shaw cell. J. Fluid Mech. 800, 264 (2016).

  68. Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

  69. Steinberg, V., Sütterlin, R., Ivlev, A. V. & Morfill, G. Vertical pairing of identical particles suspended in the plasma sheath. Phys. Rev. Lett. 86, 4540 (2001).

    ADS  Google Scholar 

  70. Ivlev, A. V. et al. Statistical mechanics where Newton’s third law is broken. Phys. Rev. X 5, 011035 (2015).

    Google Scholar 

  71. You, Z., Baskaran, A. & Marchetti, M. C. Nonreciprocity as a generic route to traveling states. Proc. Natl Acad. Sci. USA 117, 19767 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  72. Meredith, C. H. et al. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12, 1136–1142 (2020).

    Google Scholar 

  73. Jee, A.-Y., Cho, Y.-K., Granick, S. & Tlusty, T. Catalytic enzymes are active matter. Proc. Natl Acad. Sci. USA 115, E10812 (2018).

    ADS  Google Scholar 

  74. Tripathi, A. K., Das, T., Paneru, G., Pak, H. K. & Tlusty, T. Acceleration of enzymatic catalysis by active hydrodynamic fluctuations. Commun. Phys. 5, 1 (2022).

  75. Sprott, J. C. Anti-newtonian dynamics. Am. J. Phys. 77, 783 (2009).

Download references


This work was supported by the Institute for Basic Science (project code IBS-R020). We thank I. Michael and Y.-K. Cho for their essential help in constructing the microfluidic channels. T.T. thanks S.A. Safran for crucial comments on quasiparticle spectra.

Author information

Authors and Affiliations



I.S. performed the experiment, analysed the measurements and ran simulations. H.K.P. and T.T. designed and supervised the research. T.T. conceived the study of quasiparticles and flat bands in hydrodynamic systems and developed the physical theory. H.K.P., I.S. and T.T. conducted the research and wrote and revised the manuscript.

Corresponding authors

Correspondence to Imran Saeed, Hyuk Kyu Pak or Tsvi Tlusty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Philip Pincus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of experiment and simulations.

A. The pair velocity up in simulations, showing the direction \({\hat{{{{\bf{u}}}}}}_{{{{\rm{p}}}}} \sim (\cos 2\theta ,\sin 2\theta )\) (Left) and the magnitude \(\left\vert {{{{\bf{u}}}}}_{{{{\rm{p}}}}}\right\vert \sim {r}^{-2}\) (Right), with a geometric factor α = 0.34 estimated from the experiment. Solid lines are the theoretical predictions (as in the experiment, Fig. 1b). B. Distribution of velocity w.r.t. center of mass (in units of u) of all particles (gold) and in the pairs (blue) in simulations, for areal densities ρ = 1.8% (left), and 5.0% (right) (as in the experiment, Fig. 1c). C. Lifetime of pairs (in R/u units) as a function of pair size r/R for for areal densities ρ = 0.9;1.3;1.8 % in simulations (as in the experiment, Fig. 1d). Data are presented as means ± SEM, shown as error bars with whiskers, for a sample size n = 2 × 105 − 7.3 × 105 of pairs measured in each simulation (as in Fig. 1d). Solid lines are fits to a sum of two exponentials.

Extended Data Fig. 2 The spectrum computed from simulations.

The spectrum \({\omega }_{{{{\bf{k}}}}}^{+}=-{\omega }_{{{{\bf{k}}}}}^{-}\) computed in simulations of square (left), and hexagonal (right) lattices (Methods). Compare to theoretical spectra (compare to Figs. 1e,f and 4a). Both lattices include 51 × 51 particles.

Extended Data Fig. 3 Pair correlation function.

The pair correlation function g(r) computed in simulations of square (left) and hexagonal (right) lattices (Methods). Times are measured in units of τ = a3/(u2). Both lattices include 51 × 51 particles.

Extended Data Fig. 4 Scaling in the melting transition.

Progression of the mean squared deviation (MSD) in square and hexagonal crystals for a/R = 5, 6, 8, where time is normalized by (R/u)(a/R)7/2 = τ(a/R)1/2.

Supplementary information

Supplementary Video 1

Measurement of the disordered system. Motion of particles in the experimental system described in Fig. 1a–d.

Supplementary Video 2

Melting of a square lattice. Progression of the configuration and the angle-averaged structure factor S(k) for the simulation described in Fig. 2.

Supplementary Video 3

Supersonic quasiparticle avalanche. Progression of a simulation starting from an isolated pair, as described in Fig. 3.

Supplementary Video 4

Melting of a hexagonal lattice. Progression of the configuration and the angle-averaged structure factor S(k) for the simulation described in Fig. 5.

Supplementary Video 5

Melting by flat-band modes. Progression of a simulation starting from an isolated pair in a hexagonal lattice, as described in Fig. 6a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, I., Pak, H.K. & Tlusty, T. Quasiparticles, flat bands and the melting of hydrodynamic matter. Nat. Phys. 19, 536–544 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing