Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical prethermal discrete time crystal created by two-frequency driving


Discrete time crystals are non-equilibrium many-body phases of matter characterized by spontaneously broken discrete time-translation symmetry under periodic driving. At sufficiently high driving frequencies, the system enters the Floquet prethermalization regime, in which the periodically driven many-body state has a lifetime vastly exceeding the intrinsic decay time of the system. Here, we report the observation of long-lived prethermal discrete time-crystalline order in a three-dimensional (3D) lattice of 13C nuclei in diamond at room temperature. We demonstrate a two-frequency driving protocol, involving an interleaved application of slow and fast drives that simultaneously prethermalize the spins with an emergent quasi-conserved magnetization along the \({\hat{{{{\bf{x}}}}}}\) axis. This enables continuous and highly resolved observation of their dynamic evolution. We obtain videos of the time-crystalline response with a clarity and throughput orders of magnitude greater than previous experiments. Parametric control over the drive frequencies allows us to reach time-crystal lifetimes of up to 396 Floquet cycles, which we measure in a single-shot experiment. Such rapid measurement enables detailed characterization of the entire phase diagram, highlighting the role of prethermalization in stabilizing the time-crystal response. The two-frequency drive approach expands the toolkit for investigating non-equilibrium phases of matter stabilized by emergent quasi-conservation laws.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental Implementation.
Fig. 2: Continuously observed prethermalization and PDTC.
Fig. 3: Prethermal DTC phase diagram.
Fig. 4: Experimental characterization of PDTC rigidity and prethermal lifetimes.
Fig. 5: Experimental characterization of the heating dynamics at small N.

Similar content being viewed by others

Data availability

Data from experiments and simulations displayed in the main text are available in Zenodo with the identifier All other data from the Supplementary Information are available from the authors upon reasonable request.


  1. Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  2. Khemani, V., Moessner, R. & Sondhi, S. A brief history of time crystals. Preprint at (2019).

  3. Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. Matter Phys. 11, 467–499 (2020).

    Article  ADS  Google Scholar 

  4. Sacha, K. Modeling spontaneous breaking of time-translation symmetry. Phys. Rev. A 91, 033617 (2015).

    Article  ADS  Google Scholar 

  5. Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    Article  ADS  Google Scholar 

  6. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    Article  ADS  Google Scholar 

  7. von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in floquet systems. Phys. Rev. B 94, 085112 (2016).

    Article  ADS  Google Scholar 

  8. Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, criticality and realizations. Phys. Rev. Lett. 118, 030401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. Ho, W. W., Choi, S., Lukin, M. D. & Abanin, D. A. Critical time crystals in dipolar systems. Phys. Rev. Lett. 119, 010602 (2017).

    Article  ADS  Google Scholar 

  10. Liao, L., Smits, J., van der Straten, P. & Stoof, H. T. C. Dynamics of a space-time crystal in an atomic Bose-Einstein condensate. Phys. Rev. A 99, 013625 (2019).

    Article  ADS  Google Scholar 

  11. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  12. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  Google Scholar 

  13. Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett. 120, 180602 (2018).

    Article  ADS  Google Scholar 

  14. Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a space-time crystal in a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018).

    Article  ADS  Google Scholar 

  15. Rovny, J., Blum, R. L. & Barrett, S. E. 31P NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Phys. Rev. B 97, 184301 (2018).

    Article  ADS  Google Scholar 

  16. Randall, J. et al. Many-body-localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    Article  ADS  Google Scholar 

  17. Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2021).

    Article  ADS  Google Scholar 

  18. Singh, K. et al. Quantifying and controlling prethermal nonergodicity in interacting Floquet matter. Phys. Rev. X 9, 041021 (2019).

    Google Scholar 

  19. Rubio-Abadal, A. et al. Floquet prethermalization in a Bose-Hubbard system. Phys. Rev. X 10, 021044 (2020).

    Google Scholar 

  20. Peng, P., Yin, C., Huang, X., Ramanathan, C. & Cappellaro, P. Floquet prethermalization in dipolar spin chains. Nat. Phys. 17, 444–447 (2021).

    Article  Google Scholar 

  21. Abanin, D. A., De Roeck, W. & Huveneers, F. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115, 256803 (2015).

    Article  ADS  Google Scholar 

  22. Mori, T., Kuwahara, T. & Saito, K. Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems. Phys. Rev. Lett. 116, 120401 (2016).

    Article  ADS  Google Scholar 

  23. Machado, F., Else, D. V., Kahanamoku-Meyer, G. D., Nayak, C. & Yao, N. Y. Long-range prethermal phases of nonequilibrium matter. Phys. Rev. X 10, 011043 (2020).

    Google Scholar 

  24. Else, D. V., Bauer, B. & Nayak, C. Prethermal phases of matter protected by time-translation symmetry. Phys. Rev. X 7, 011026 (2017).

    Google Scholar 

  25. Pizzi, A., Nunnenkamp, A. & Knolle, J. Classical prethermal phases of matter. Phys. Rev. Lett. 127, 140602 (2021).

    Article  ADS  Google Scholar 

  26. Ye, B., Machado, F. & Yao, N. Y. Floquet phases of matter via classical prethermalization. Phys. Rev. Lett. 127, 140603 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  27. Yao, N. Y., Nayak, C., Balents, L. & Zaletel, M. P. Classical discrete time crystals. Nat. Phys. 16, 438–447 (2020).

    Article  Google Scholar 

  28. Rovny, J., Blum, R. L. & Barrett, S. E. Observation of discrete-time-crystal signatures in an ordered dipolar many-body system. Phys. Rev. Lett. 120, 180603 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. Kyprianidis, A. et al. Observation of a prethermal discrete time crystal. Science 372, 1192–1196 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  30. Ajoy, A. et al. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. Sci. Adv. 4, eaar5492 (2018).

    Article  ADS  Google Scholar 

  31. Ajoy, A. et al. Enhanced dynamic nuclear polarization via swept microwave frequency combs. Proc. Natl Acad. Sci. USA 115, 10576–10581 (2018).

    Article  Google Scholar 

  32. Duer, M. Introduction to Solid-State NMR Spectroscopy (Wiley, 2004).

  33. Beatrez, W. et al. Floquet prethermalization with lifetime exceeding 90 s in a bulk hyperpolarized solid. Phys. Rev. Lett. 127, 170603 (2021).

    Article  ADS  Google Scholar 

  34. Reynhardt, E. Spin lattice relaxation of spin-1/2 nuclei in solids containing diluted paramagnetic impurity centers. I. Zeeman polarization of nuclear spin system. Concepts Magn. Reson. A 19A, 20–35 (2003).

    Article  Google Scholar 

  35. Ajoy, A. et al. Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond. Nat. Commun. 10, 5160 (2019).

    Article  ADS  Google Scholar 

  36. Luitz, D. J., Moessner, R., Sondhi, S. L. & Khemani, V. Prethermalization without temperature. Phys. Rev. X 10, 021046 (2020).

    Google Scholar 

  37. Video of full dataset from Fig. 2a of main text (2021).

  38. Video of full dataset from Fig. 2b and Fig. 3a of main text (first 55 Floquet cycles) (2021).

  39. Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains. SciPost Phys. 2, 003 (2017).

    Article  ADS  Google Scholar 

Download references


We thank J. Bardarson, M. Heyl, C. von Keyserlingk, D. Luitz, R. Moessner, J. Reimer and D. Suter for valuable discussions. A. Ajoy acknowledges funding from ONR under contract no. N00014-20-1-2806. C.F. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement nos. 679722 and 101001902). M.B. was supported by the Marie Skłodowska-Curie grant agreement no. 890711, and the Bulgarian National Science Fund within National Science Program VIHREN, contract no. KP-06-DV-5 (until 25 June 2021). The computational work reported on in this Article was enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through grant agreement no. 2018-05973 and the Würzburg HPC cluster. Computational work reported on in this Article was performed on the Würzburg HPC cluster.

Author information

Authors and Affiliations



W.B., C.F., M.B. and A. Ajoy conceived the research. W.B., A.P., E.d.L.S., A. Akkiraju, J.D.A., S.C., P.R., E.D. and A. Ajoy set up the experimental apparatus, performed measurements and analysed the data. C.F. performed the numerical simulations and the perturbative analysis. A. Ajoy and M.B. supervised the experiment and the theory work.

Corresponding authors

Correspondence to Marin Bukov or Ashok Ajoy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Tim Hugo Taminiau, Fedor Jelezko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Table 1 and Figs. 1–19.

Supplementary Video 1

Video of zoomed in view of three Floquet cycles, showing prethermalizing dynamics during two-frequency driving.

Supplementary Video 2

Video of 25 Floquet cycles, showing emergence of the prethermal DTC.

Supplementary Video 3

Video of 55 Floquet cycles, showing emergence of the prethermal DTC.

Supplementary Video 4

Video of 155 Floquet cycles, showing emergence of the prethermal DTC.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beatrez, W., Fleckenstein, C., Pillai, A. et al. Critical prethermal discrete time crystal created by two-frequency driving. Nat. Phys. 19, 407–413 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing