Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing the onset of quantum avalanches in a many-body localized system

Abstract

Strongly correlated systems can exhibit unexpected phenomena when brought in a state far from equilibrium. An example is many-body localization, which prevents generic interacting systems from reaching thermal equilibrium even at long times1,2. The stability of the many-body localized phase has been predicted to be hindered by the presence of small thermal inclusions that act as a bath, leading to the delocalization of the entire system through an avalanche propagation mechanism3,4,5,6,7,8. Here we study the dynamics of a thermal inclusion of variable size when it is coupled to a many-body localized system. We find evidence for accelerated transport of thermal inclusion into the localized region. We monitor how the avalanche spreads through the localized system and thermalizes it site by site by measuring the site-resolved entropy over time. Furthermore, we isolate the strongly correlated bath-induced dynamics with multipoint correlations between the bath and the system. Our results have implications on the robustness of many-body localized systems and their critical behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bath-induced quantum avalanches.
Fig. 2: Accelerated transport across the clean–disorder interface.
Fig. 3: Site-resolved thermalization dynamics.
Fig. 4: Bath-induced many-body correlations.

Similar content being viewed by others

References

  1. Alet, F. & Laflorencie, N. Many-body localization: an introduction and selected topics. C. R. Phys. 19, 498–525 (2018).

    ADS  Google Scholar 

  2. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    ADS  MathSciNet  Google Scholar 

  3. Nandkishore, R. & Gopalakrishnan, S. Many body localized systems weakly coupled to baths. Ann. Phys. 529, 1600181 (2017).

    Google Scholar 

  4. De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    ADS  Google Scholar 

  5. Luitz, D. J., Huveneers, F. & De Roeck, W. How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017).

    ADS  Google Scholar 

  6. Thiery, T., Huveneers, F., Müller, M. & De Roeck, W. Many-body delocalization as a quantum avalanche. Phys. Rev. Lett. 121, 140601 (2018).

    ADS  Google Scholar 

  7. Crowley, P. J. D. & Chandran, A. Avalanche induced coexisting localized and thermal regions in disordered chains. Phys. Rev. Research 2, 033262 (2020).

    ADS  Google Scholar 

  8. Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

    ADS  Google Scholar 

  9. Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  10. Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Google Scholar 

  11. Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    MathSciNet  MATH  Google Scholar 

  12. Rubio-Abadal, A. et al. Many-body delocalization in the presence of a quantum bath. Phys. Rev. X 9, 041014 (2019).

    Google Scholar 

  13. Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    Google Scholar 

  14. Lüschen, H. P. et al. Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems. Phys. Rev. Lett. 119, 260401 (2017).

    ADS  Google Scholar 

  15. Rispoli, M. et al. Quantum critical behaviour at the many-body localization transition. Nature 573, 385–389 (2019).

    ADS  Google Scholar 

  16. Abanin, D. A. et al. Distinguishing localization from chaos: challenges in finite-size systems. Ann. Phys. 427, 168415 (2021).

    MathSciNet  Google Scholar 

  17. Panda, R. K., Scardicchio, A., Schulz, M., Taylor, S. R. & Žnidarič, M. Can we study the many-body localisation transition? Europhys. Lett. 128, 67003 (2019).

    Google Scholar 

  18. Sierant, P., Delande, D. & Zakrzewski, J. Thouless time analysis of Anderson and many-body localization transitions. Phys. Rev. Lett. 124, 186601 (2020).

    ADS  Google Scholar 

  19. Šuntajs, J., Bonča, J., Prosen, T. & Vidmar, L. Quantum chaos challenges many-body localization. Phys. Rev. E 102, 062144 (2020).

    ADS  MathSciNet  Google Scholar 

  20. Šuntajs, J., Bonča, J., Prosen, T. & Vidmar, L. Ergodicity breaking transition in finite disordered spin chains. Phys. Rev. B 102, 064207 (2020).

    ADS  Google Scholar 

  21. Luitz, D. J. & Lev, Y. B. Absence of slow particle transport in the many-body localized phase. Phys. Rev. B 102, 100202 (2020).

    ADS  Google Scholar 

  22. Kiefer-Emmanouilidis, M., Unanyan, R., Fleischhauer, M. & Sirker, J. Evidence for unbounded growth of the number entropy in many-body localized phases. Phys. Rev. Lett. 124, 243601 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  23. Kiefer-Emmanouilidis, M., Unanyan, R., Fleischhauer, M. & Sirker, J. Absence of true localization in many-body localized phases. Phys. Rev. B 103, 024203 (2021).

    ADS  MATH  Google Scholar 

  24. Sels, D. Bath-induced delocalization in interacting disordered spin chains. Phys. Rev. B 106, L020202 (2022).

    ADS  MathSciNet  Google Scholar 

  25. Agarwal, K., Gopalakrishnan, S., Knap, M., Müller, M. & Demler, E. Anomalous diffusion and Griffiths effects near the many-body localization transition. Phys. Rev. Lett. 114, 160401 (2015).

    ADS  Google Scholar 

  26. Bar Lev, Y., Cohen, G. & Reichman, D. R. Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. Phys. Rev. Lett. 114, 100601 (2015).

    ADS  MathSciNet  Google Scholar 

  27. Žnidarič, M., Scardicchio, A. & Varma, V. K. Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett. 117, 040601 (2016).

    ADS  Google Scholar 

  28. Gopalakrishnan, S., Agarwal, K., Demler, E. A., Huse, D. A. & Knap, M. Griffiths effects and slow dynamics in nearly many-body localized systems. Phys. Rev. B 93, 134206 (2016).

    ADS  Google Scholar 

  29. Agarwal, K. et al. Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017).

    MathSciNet  Google Scholar 

  30. Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).

    Google Scholar 

  31. Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

    Google Scholar 

  32. Gopalakrishnan, S. et al. Low-frequency conductivity in many-body localized systems. Phys. Rev. B 92, 104202 (2015).

    ADS  Google Scholar 

  33. Weiner, F., Evers, F. & Bera, S. Slow dynamics and strong finite-size effects in many-body localization with random and quasiperiodic potentials. Phys. Rev. B 100, 104204 (2019).

    ADS  Google Scholar 

  34. Khemani, V., Lim, S. P., Sheng, D. N. & Huse, D. A. Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017).

    Google Scholar 

  35. Khemani, V., Sheng, D. N. & Huse, D. A. Two universality classes for the many-body localization transition. Phys. Rev. Lett. 119, 075702 (2017).

    ADS  Google Scholar 

  36. Kelly, S. P., Nandkishore, R. & Marino, J. Exploring many-body localization in quantum systems coupled to an environment via Wegner-Wilson flows. Nucl. Phys. B 951, 114886 (2020).

    MathSciNet  MATH  Google Scholar 

  37. Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969).

    ADS  Google Scholar 

  38. McCoy, B. M. Incompleteness of the critical exponent description for ferromagnetic systems containing random impurities. Phys. Rev. Lett. 23, 383–386 (1969).

    ADS  Google Scholar 

  39. Setiawan, F., Deng, D.-L. & Pixley, J. H. Transport properties across the many-body localization transition in quasiperiodic and random systems. Phys. Rev. B 96, 104205 (2017).

    ADS  Google Scholar 

  40. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    ADS  Google Scholar 

  41. Kubo, R. Generalized cumulant expansion method. J. Phys. Soc. Jpn 17, 1100–1120 (1962).

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with K. Agarwal, V. Khemani, M. Knap, M. Lebrat and J. Marino. We are supported by grants from the National Science Foundation, the Gordon and Betty Moore Foundations EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, the Swiss National Science Foundation (J.L.) and the NSF Graduate Research Fellowship Program (S.K.). The Flatiron Institute is a division of the Simons Foundation. D.S. is supported by the AFOSR grant FA9550-21-1-0236 and NSF grant OAC-2118310.

Author information

Authors and Affiliations

Authors

Contributions

J.L., S.K., M.R., A.L., R.S. and J.K. contributed to conducting the experiment, and collecting and analysing the data. S.K. performed the numerical simulations. The theoretical concepts were developed together with D.S. and E.D. M.G. supervised the work. All the authors contributed to writing the manuscript and discussions.

Corresponding author

Correspondence to Markus Greiner.

Ethics declarations

Competing interests

M.G. is co-founder and shareholder of QuEra Computing. All other authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Giovanni Modugno and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Table 1 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léonard, J., Kim, S., Rispoli, M. et al. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys. 19, 481–485 (2023). https://doi.org/10.1038/s41567-022-01887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01887-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing