The magnetic flux in a superconducting loop can only change by discrete jumps called phase slips. The energy dissipated by an individual phase slip has now been detected thanks to advances in precision temperature measurements.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Gümüş, E. et al. Nat. Phys. https://doi.org/10.1038/s41567-022-01844-0 (2023).
van Duzer, T. & Turner, C. W. Principles of Superconductive Devices and Circuits (Elsevier, 1981).
Schmidt, D. R., Yung, C. S. & Cleland, A. N. Appl. Phys. Lett. 83, 1002–1004 (2003).
Kokkoniemi, R. et al. Commun. Phys. 2, 124 (2019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Aumentado, J. A SQUID cools down after a slip. Nat. Phys. 19, 152–153 (2023). https://doi.org/10.1038/s41567-022-01879-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-022-01879-3