Abstract
de Broglie wave packets accompanying moving particles are dispersive and lack an intrinsic length scale solely dictated by the particle mass and velocity. Mackinnon proposed a localized non-dispersive wave packet constructed out of dispersive de Broglie phase waves that possess an intrinsic length scale via an inversion of the roles of particle and observer. So far, the de Broglie–Mackinnon wave packet has remained a theoretical proposal. Here we report the observation of optical de Broglie–Mackinnon wave packets using paraxial space–time-coupled pulsed laser fields in the presence of anomalous group-velocity dispersion. Crucially, the bandwidth of de Broglie–Mackinnon wave packets has an upper limit that is compatible with the wave-packet group velocity and equivalent mass. In contrast to previously observed linear-propagation-invariant wave packets whose spatio-temporal profiles at any axial plane are X-shaped, those for de Broglie–Mackinnon wave packets are uniquely O-shaped (circularly symmetric with respect to space and time). By sculpting their spatio-temporal spectral structure, we produce dispersion-free de Broglie–Mackinnon wave packets in the dispersive medium, observe their circularly symmetric spatio-temporal intensity profiles and closed-trajectory spectra, and tune the field parameters that uniquely determine the wave-packet length scale.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Change history
05 June 2024
Editor’s Note: Readers are alerted that there is an error in Equation (2) in this paper. Editorial action is being taken to correct this.
References
Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys.47, 264–267 (1979).
Greenberger, D. M. Comment on ‘Nonspreading wave packets’. Am. J. Phys.48, 256 (1980).
Siviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett.32, 979–981 (2007).
Zhang, P. et al. Generation of acoustic self-bending and bottle beams by phase engineering. Nat. Commun.5, 4316 (2014).
Fu, S., Tsur, Y., Zhou, J., Shemer, L. & Arie, A. Propagation dynamics of Airy water-wave pulses. Phys. Rev. Lett.115, 034501 (2015).
Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature494, 331–335 (2013).
Kaminer, I., Nemirovsky, J., Rechtsman, M., Bekenstein, R. & Segev, M. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nat. Phys.11, 261–267 (2015).
Mackinnon, L. A nondispersive de Broglie wave packet. Found. Phys.8, 157–176 (1978).
de Broglie, L. Recherches sur la théorie des quanta. Ann. de Phys.3, 22 (1925).
Cohen-Tannoudji, C., Diu, B. & Laloe, F. Quantum Mechanics (Wiley, 1991).
Torres, J. P., Hendrych, M. & Valencia, A. Angular dispersion: an enabling tool in nonlinear and quantum optics. Adv. Opt. Photon.2, 319–369 (2010).
Fülöp, J. A. & Hebling, J. in Recent Optical and Photonic Technologies (ed. Kim, K. Y.) Ch. 11 (IntechOpen, 2010).
Saari, P. & Reivelt, K. Generation and classification of localized waves by Lorentz transformations in Fourier space. Phys. Rev. E69, 036612 (2004).
Zamboni-Rached, M. & Recami, E. Subluminal wave bullets: exact localized subluminal solutions to the wave equations. Phys. Rev. A77, 033824 (2008).
Yessenov, M., Hall, L. A., Schepler, K. L. & Abouraddy, A. F. Space-time wave packets. Adv. Opt. Photon.14, 455–570 (2022).
Wilczek, F. A Beautiful Question: Finding Nature’s Deep Design (Penguin Press, 2015).
Saleh, B. E. A. & Teich, M. C. Principles of Photonics (Wiley, 2007).
Kondakci, H. E. & Abouraddy, A. F. Diffraction-free pulsed optical beams via space-time correlations. Opt. Express24, 28659–28668 (2016).
Parker, K. J. & Alonso, M. A. The longitudinal iso-phase condition and needle pulses. Opt. Express24, 28669–28677 (2016).
Wong, L. J. & Kaminer, I. Ultrashort tilted-pulse-front pulses and nonparaxial tilted-phase-front beams. ACS Photon.4, 2257–2264 (2017).
Porras, M. A. Gaussian beams diffracting in time. Opt. Lett.42, 4679–4682 (2017).
Efremidis, N. K. Spatiotemporal diffraction-free pulsed beams in free-space of the Airy and Bessel type. Opt. Lett.42, 5038–5041 (2017).
Porras, M. A., Trillo, S., Conti, C. & Di Trapani, P. Paraxial envelope X waves. Opt. Lett.28, 1090–1092 (2003).
Porras, M. A., Valiulis, G. & Di Trapani, P. Unified description of Bessel X waves with cone dispersion and tilted pulses. Phys. Rev. E68, 016613 (2003).
Longhi, S. Localized subluminal envelope pulses in dispersive media. Opt. Lett.29, 147–149 (2004).
Porras, M. A. & Di Trapani, P. Localized and stationary light wave modes in dispersive media. Phys. Rev. E69, 066606 (2004).
Malaguti, S., Bellanca, G. & Trillo, S. Two-dimensional envelope localized waves in the anomalous dispersion regime. Opt. Lett.33, 1117–1119 (2008).
Malaguti, S. & Trillo, S. Envelope localized waves of the conical type in linear normally dispersive media. Phys. Rev. A79, 063803 (2009).
Hall, L. A. & Abouraddy, A. F. Canceling and inverting normal and anomalous group-velocity dispersion using space-time wave packets. Preprint at https://arxiv.org/abs/2202.01148 (2022).
Kondakci, H. E. & Abouraddy, A. F. Optical space-time wave packets of arbitrary group velocity in free space. Nat. Commun.10, 929 (2019).
Bhaduri, B., Yessenov, M. & Abouraddy, A. F. Anomalous refraction of optical spacetime wave packets. Nat. Photon.14, 416–421 (2020).
Hall, L. A. & Abouraddy, A. F. A universal angular-dispersion synthesizer. Preprint at https://arxiv.org/abs/2109.13987 (2021).
Saari, P. & Reivelt, K. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett.79, 4135–4138 (1997).
Turunen, J. & Friberg, A. T. Propagation-invariant optical fields. Prog. Opt.54, 1–88 (2010).
Hernández-Figueroa, H. E., Recami, E. & Zamboni-Rached, M. (eds) Non-Diffracting Waves (Wiley-VCH, 2014).
Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Airy–Bessel wave packets as versatile linear light bullets. Nat. Photon.4, 103–106 (2010).
MacKinnon, E. De Broglie’s thesis: a critical retrospective. Am. J. Phys.44, 1047–1055 (1976).
Espinosa, J. M. Physical properties of de Broglie’s phase waves. Am. J. Phys.50, 357–362 (1982).
Donnelly, R. & Ziolkowski, R. W. Designing localized waves. Proc. R. Soc. Lond. A440, 541–565 (1993).
Bélanger, P. A. Lorentz transformation of packetlike solutions of the homogeneous-wave equation. J. Opt. Soc. Am. A3, 541–542 (1986).
Longhi, S. Gaussian pulsed beams with arbitrary speed. Opt. Express12, 935–940 (2004).
Kondakci, H. E. & Abouraddy, A. F. Airy wavepackets accelerating in space-time. Phys. Rev. Lett.120, 163901 (2018).
Yessenov, M. et al. What is the maximum differential group delay achievable by a space-time wave packet in free space? Opt. Express27, 12443–12457 (2019).
Kondakci, H. E. & Abouraddy, A. F. Diffraction-free space–time beams. Nat. Photon.11, 733–740 (2017).
Unnikrishnan, K. & Rau, A. R. P. Uniqueness of the Airy packet in quantum mechanics. Am. J. Phys.64, 1034–1035 (1996).
Sezginer, A. A general formulation of focus wave modes. J. Appl. Phys.57, 678–683 (1985).
Kondakci, H. E., Alonso, M. A. & Abouraddy, A. F. Classical entanglement underpins the invariant propagation of space–time wave packets. Opt. Lett.44, 2645–2648 (2019).
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon.15, 253–262 (2021).
Yessenov, M. & Abouraddy, A. F. Accelerating and decelerating space-time optical wave packets in free space. Phys. Rev. Lett.125, 233901 (2020).
Hall, L. A., Yessenov, M. & Abouraddy, A. F. Arbitrarily accelerating space-time wave packets. Opt. Lett.47, 694–697 (2022).
Li, Z. & Kawanaka, J. Velocity and acceleration freely tunable straight-line propagation light bullet. Sci. Rep.10, 11481 (2020).
Sloan, J., Rivera, N., Joannopoulos, J. D. & Soljačić, M. Controlling two-photon emission from superluminal and accelerating index perturbations. Nat. Phys.18, 67–73 (2022).
Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A86, 033824 (2012).
Caloz, C. & Deck-Léger, Z.-L. Spacetime metamaterials–part I: general concepts. IEEE Trans. Antennas Propag.68, 1569–1582 (2020).
Guo, C., Xiao, M., Orenstein, M. & Fan, S. Structured 3D linear space-time light bullets by nonlocal nanophotonics. Light Sci. Appl.10, 160 (2021).
Pang, K. et al. Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb. Opt. Express30, 16712–16724 (2022).
Yessenov, M. et al. Space-time wave packets localized in all dimensions. Nat. Commun.13, 4573 (2022).
Yessenov, M., Chen, Z., Lavery, M. P. J. & Abouraddy, A. F. Vector space-time wave packets. Opt. Lett.47, 4131–4134 (2022).
Schepler, K. L., Yessenov, M., Zhiyenbayev, Y. & Abouraddy, A. F. Space-time surface plasmon polaritons: a new propagation-invariant surface wave packet. ACS Photon.7, 2966–2977 (2020).
Acknowledgements
We thank M. Yessenov, K. L. Schepler, D. N. Christidoulides and A. Dogariu for helpful discussions. This work was supported by the US Office of Naval Research (ONR) under contracts N00014-17-1-2458 and N00014-20-1-2789.
Author information
Authors and Affiliations
Contributions
L.A.H. and A.F.A. conceived the idea and designed the experimental approach. L.A.H. carried out the experiment. L.A.H. and A.F.A. analysed the data and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hall, L.A., Abouraddy, A.F. Observation of optical de Broglie–Mackinnon wave packets. Nat. Phys. 19, 435–444 (2023). https://doi.org/10.1038/s41567-022-01876-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-022-01876-6
This article is cited by
-
Elusive phase wave caught
Nature Physics (2023)
-
A Time-Symmetric Soliton Dynamics à la de Broglie
Foundations of Physics (2023)