Abstract
Coupled systems with multiple interacting degrees of freedom provide a fertile ground for emergent dynamics, which is otherwise inaccessible in their solitary counterparts. Here we show that coupled nonlinear optical resonators can undergo self-organization in their spectrum leading to a first-order phase transition. We experimentally demonstrate such a spectral phase transition in time-multiplexed coupled optical parametric oscillators. We switch the nature of mutual coupling from dispersive to dissipative and access distinct spectral regimes of the parametric oscillator dimer. We observe abrupt spectral discontinuity at the first-order transition point. Furthermore, we show how non-equilibrium phase transitions can lead to enhanced sensing, where the applied perturbation is not resolvable by the underlying linear system. Our approach could be exploited for sensing applications that use nonlinear driven-dissipative systems, leading to performance enhancements without sacrificing sensitivity.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
Source data are available for this paper and can be found at https://doi.org/10.6084/m9.figshare.21252147. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Code availability
The codes that support the findings of this study are available from the corresponding author upon reasonable request.
References
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).
Tikan, A. et al. Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17, 604–610 (2021).
Grigoriev, V. & Biancalana, F. Resonant self-pulsations in coupled nonlinear microcavities. Phys. Rev. A 83, 043816 (2011).
Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photonics 13, 36–40 (2019).
Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).
Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527–21540 (2015).
Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics 13, 616–622 (2019).
Roy, A. et al. Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators. Optica 8, 415–421 (2021).
Okawachi, Y. et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun. 11, 4119 (2020).
Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).
McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).
Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent ising machine. Nat. Photonics 8, 937–942 (2014).
Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photonics 12, 688–693 (2018).
Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).
Roy, A., Jahani, S., Langrock, C., Fejer, M. & Marandi, A. Spectral phase transitions in optical parametric oscillators. Nat. Commun. 12, 835 (2021).
Haken, H. Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975).
Vaupel, M., Maitre, A. & Fabre, C. Observation of pattern formation in optical parametric oscillators. Phys. Rev. Lett. 83, 5278 (1999).
Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).
Ropp, C., Bachelard, N., Barth, D., Wang, Y. & Zhang, X. Dissipative self-organization in optical space. Nat. Photonics 12, 739–743 (2018).
Taranenko, V. B., Staliunas, K. & Weiss, C. O. Pattern formation and localized structures in degenerate optical parametric mixing. Phys. Rev. Lett. 81, 2236 (1998).
Oppo, G.-L., Yao, A. M. & Cuozzo, D. Self-organization, pattern formation, cavity solitons, and rogue waves in singly resonant optical parametric oscillators. Phys. Rev. A 88, 043813 (2013).
Wu, F. O., Hassan, A. U. & Christodoulides, D. N. Thermodynamic theory of highly multimoded nonlinear optical systems. Nat. Photonics 13, 776–782 (2019).
Turing, A. M. The chemical basis of morphogenesis. Bull. Math. Biol. 52, 153–197 (1990).
DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170 (1970).
Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).
Gordon, A. & Fischer, B. Phase transition theory of many-mode ordering and pulse formation in lasers. Phys. Rev. Lett. 89, 103901 (2002).
Stanley, H. E. Phase Transitions and Critical Phenomena. (Clarendon Press, 1971).
Prigogine, I. & Lefever, R. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968).
Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).
Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).
Dechoum, K., Rosales-Zárate, L. & Drummond, P. D. Critical fluctuations in an optical parametric oscillator: when light behaves like magnetism. J. Opt. Soc. Am. B 33, 871–883 (2016).
Drummond, P. D., McNeil, K. J. & Walls, D. F. Non-equilibrium transitions in sub/second harmonic generation. Opt. Acta 27, 321–335 (1980).
Kuznetsov, A. V. Optical bistability driven by a first order phase transition. Opt. Commun. 81, 106–111 (1991).
Gol’Tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).
Yang, L.-P. & Jacob, Z. Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions. Opt. Express 27, 10482–10494 (2019).
Di Candia, R., Minganti, F., Petrovnin, K. V., Paraoanu, G. S. & Felicetti, S. Critical parametric quantum sensing. Preprint at https://doi.org/2107.04503 (2021).
Del Bino, L., Silver, J. M., Stebbings, S. L. & Del’Haye, P. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep. 7, 43142 (2017).
Wang, C. et al. A nonlinear microresonator refractive index sensor. J. Lightwave Technol. 33, 4360–4366 (2015).
Kaplan, A. E. & Meystre, P. Enhancement of the Sagnac effect due to nonlinearly induced nonreciprocity. Opt. Lett. 6, 590–592 (1981).
Wang, C. et al. Nonlinearly enhanced refractive index sensing in coupled optical microresonators. Opt. Lett. 39, 26–29 (2014).
Hamerly, R. et al. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Phys. Rev. A 94, 063809 (2016).
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).
Leefmans, C. et al. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys. 18, 442–449 (2022).
Ding, J., Belykh, I., Marandi, A. & Miri, M.-A. Dispersive versus dissipative coupling for frequency synchronization in lasers. Phys. Rev. Appl. 12, 054039 (2019).
Lee, K. F. et al. Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared gaas optical parametric oscillator. Opt. Lett. 38, 1191–1193 (2013).
Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J. & Otto, C. Sensor based on an integrated optical microcavity. Opt. Lett. 27, 512–514 (2002).
Heideman, R. G. & Lambeck, P. V. Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated mach–zehnder interferometer system. Sens. Actuators B: Chem. 61, 100–127 (1999).
Ren, J. et al. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett. 42, 1556–1559 (2017).
Puckett, M. W. et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth. Nat. Commun. 12, 934 (2021).
Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).
Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).
Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics 16, 625–631 (2022).
Tusnin, A. K., Tikan, A. M., Komagata, K. & Kippenberg, T. J. Coherent dissipative structures in chains of coupled χ(3) resonators. Preprint at https://arxiv.org/abs/2104.11731 (2021).
Longhi, S. & Geraci, A. Swift-hohenberg equation for optical parametric oscillators. Phys. Rev. A 54, 4581 (1996).
Okawachi, Y. et al. Dual-pumped degenerate kerr oscillator in a silicon nitride microresonator. Opt. Lett. 40, 5267–5270 (2015).
Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986).
Gatti, A. & Lugiato, L. Quantum images and critical fluctuations in the optical parametric oscillator below threshold. Phys. Rev. A 52, 1675 (1995).
Longhi, S. Nonadiabatic pattern formation in optical parametric oscillators. Phys. Rev. Lett. 84, 5756 (2000).
Menotti, M. et al. Nonlinear coupling of linearly uncoupled resonators. Phys. Rev. Lett. 122, 013904 (2019).
Langrock, C. & Fejer, M. M. Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides. Opt. Lett. 32, 2263–2265 (2007).
Acknowledgements
We thank S. Jahani and M. Gyun Suh for helpful discussions. We acknowledge support from ARO grant no. W911NF-18-1-0285 (A.M.), AFOSR award FA9550-20-1-0040 (A.M.), NSF grant nos. 1846273 (A.M.) and 1918549 (A.M.), and NASA. We wish to thank NTT Research for their financial and technical support.
Author information
Authors and Affiliations
Contributions
A.R. and A.M. conceived the idea. A.R. performed the experiments with help from R.N. A.R. developed the theory and performed the numerical simulations. C.L. fabricated the PPLN waveguide used in the experiment with the supervision of M.F. A.R. and A.M. wrote the manuscript with input from all authors. A.M. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary information containing Table 1, Figs. 1–24 and references.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Roy, A., Nehra, R., Langrock, C. et al. Non-equilibrium spectral phase transitions in coupled nonlinear optical resonators. Nat. Phys. 19, 427–434 (2023). https://doi.org/10.1038/s41567-022-01874-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-022-01874-8