Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-demand directional microwave photon emission using waveguide quantum electrodynamics

Abstract

Routing quantum information between non-local computational nodes is a foundation for extensible networks of quantum processors. Quantum information transfer between arbitrary nodes is generally mediated either by photons that propagate between them or by resonantly coupling nearby nodes. The utility is determined by the type of emitter, propagation channel and receiver. Conventional approaches involving propagating microwave photons have limited fidelity due to photon loss and are often unidirectional, whereas architectures that use direct resonant coupling are bidirectional in principle but can generally accommodate only a few local nodes. Here we demonstrate high-fidelity, on-demand, directional, microwave photon emission. We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide, effectively creating a chiral microwave waveguide. Quantum interference between the photon emission pathways from the molecule generates single photons that selectively propagate in a chosen direction. This circuit will also be capable of photon absorption, making it suitable for building interconnects within extensible quantum networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Directional emission in a waveguide QED architecture.
Fig. 2: Verifying protocol conditions via elastic scattering.
Fig. 3: Pulse sequence and time-domain measurements.
Fig. 4: Photon state tomography.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used for numerical simulations and data analyses is available from the corresponding author upon reasonable request.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  2. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Google Scholar 

  3. Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999).

    ADS  MathSciNet  Google Scholar 

  4. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS  Google Scholar 

  5. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

    ADS  Google Scholar 

  6. Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    ADS  Google Scholar 

  7. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    ADS  Google Scholar 

  8. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014).

    ADS  Google Scholar 

  9. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  10. Solano, P. et al. in Advances In Atomic, Molecular, and Optical Physics, Vol. 66 (eds Arimondo, E. et al.) Ch. 7 (Elsevier, 2017).

  11. Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).

    ADS  Google Scholar 

  12. Pino, J. M. et al. Demonstration of the trapped-ion quantum ccd computer architecture. Nature 592, 209–213 (2021).

    ADS  Google Scholar 

  13. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    ADS  Google Scholar 

  14. Zhong, Y. P. et al. Violating bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    Google Scholar 

  15. Leung, N. et al. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf. 5, 18 (2019).

    ADS  Google Scholar 

  16. Chang, H.-S. et al. Remote entanglement via adiabatic passage using a tunably dissipative quantum communication system. Phys. Rev. Lett. 124, 240502 (2020).

    ADS  Google Scholar 

  17. Zhong, Y. et al. Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571–575 (2021).

    ADS  Google Scholar 

  18. Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum 2, 030321 (2021).

    ADS  Google Scholar 

  19. Ramette, J. et al. Any-to-any connected cavity-mediated architecture for quantum computing with trapped ions or rydberg arrays. PRX Quantum 3, 010344 (2022).

    ADS  Google Scholar 

  20. Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    ADS  Google Scholar 

  21. Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    Google Scholar 

  22. Campagne-Ibarcq, P. et al. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett. 120, 200501 (2018).

    ADS  Google Scholar 

  23. Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).

    ADS  Google Scholar 

  24. Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    ADS  Google Scholar 

  25. Gheeraert, N., Kono, S. & Nakamura, Y. Programmable directional emitter and receiver of itinerant microwave photons in a waveguide. Phys. Rev. A 102, 053720 (2020).

    ADS  Google Scholar 

  26. Guimond, P.-O. et al. A unidirectional on-chip photonic interface for superconducting circuits. npj Quantum Inf. 6, 32 (2020).

    ADS  Google Scholar 

  27. Solano, P., Barberis-Blostein, P., & Sinha, K. Collective directional emission from distant emitters in waveguide QED. Preprint at http://arxiv.org/abs/2108.12951 (2021).

  28. Lalumière, K. et al. Input–output theory for waveguide qed with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013).

    ADS  Google Scholar 

  29. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).

    ADS  Google Scholar 

  30. Hoi, I.-C. et al. Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011).

    ADS  Google Scholar 

  31. Hoi, I.-C. et al. Microwave quantum optics with an artificial atom in one-dimensional open space. N. J. Phys. 15, 025011 (2013).

    Google Scholar 

  32. Hoi, I.-C. et al. Probing the quantum vacuum with an artificial atom in front of a mirror. Nat. Phys. 11, 1045–1049 (2015).

    MathSciNet  Google Scholar 

  33. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  MATH  Google Scholar 

  34. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    ADS  Google Scholar 

  35. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    ADS  Google Scholar 

  36. Frisk Kockum, A., Delsing, P. & Johansson, G. Designing frequency-dependent relaxation rates and lamb shifts for a giant artificial atom. Phys. Rev. A 90, 013837 (2014).

    ADS  Google Scholar 

  37. Kockum, A. F., Johansson, G. & Nori, F. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Phys. Rev. Lett. 120, 140404 (2018).

    ADS  Google Scholar 

  38. Frisk Kockum, A. in International Symposium on Mathematics, Quantum Theory, and Cryptography (eds Takagi, T. et al.) 125–146 (Springer, 2021).

  39. Vadiraj, A. M. et al. Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics. Phys. Rev. A 103, 023710 (2021).

    ADS  Google Scholar 

  40. Kannan, B. et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775–779 (2020).

    ADS  Google Scholar 

  41. Abdumalikov, A. A., Astafiev, O. V., Pashkin, Y. A., Nakamura, Y. & Tsai, J. S. Dynamics of coherent and incoherent emission from an artificial atom in a 1D space. Phys. Rev. Lett. 107, 043604 (2011).

  42. Hoi, I.-C. et al. Generation of nonclassical microwave states using an artificial atom in 1D open space. Phys. Rev. Lett. 108, 263601 (2012).

    ADS  Google Scholar 

  43. Forn-Díaz, P., Warren, C. W., Chang, C. W. S., Vadiraj, A. M. & Wilson, C. M. On-demand microwave generator of shaped single photons. Phys. Rev. Appl. 8, 054015 (2017).

    ADS  Google Scholar 

  44. González-Tudela, A., Paulisch, V., Chang, D. E., Kimble, H. J. & Cirac, J. I. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett. 115, 163603 (2015).

    ADS  Google Scholar 

  45. Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

    Google Scholar 

  46. Gasparinetti, S. et al. Correlations and entanglement of microwave photons emitted in a cascade decay. Phys. Rev. Lett. 119, 140504 (2017).

    ADS  Google Scholar 

  47. Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

    ADS  Google Scholar 

  48. Kannan, B. et al. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. Sci. Adv. 6, eabb8780 (2020).

    ADS  Google Scholar 

  49. Corzo, N. V. et al. Waveguide-coupled single collective excitation of atomic arrays. Nature 566, 359–362 (2019).

    ADS  Google Scholar 

  50. Solano, P. et al. Alignment-dependent decay rate of an atomic dipole near an optical nanofiber. Phys. Rev. A 99, 013822 (2019).

    ADS  Google Scholar 

  51. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    ADS  Google Scholar 

  52. Scarpelli, L. et al. 99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Phys. Rev. B 100, 035311 (2019).

  53. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Google Scholar 

  54. Redchenko, E. S. et al. Tunable directional photon scattering from a pair of superconducting qubits. Preprint at https://arxiv.org/abs/2205.03293 (2022).

  55. Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  56. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    ADS  Google Scholar 

  57. Sung, Y. et al. Realization of high-fidelity CZ and ZZ-free iswap gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).

    Google Scholar 

  58. Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111, 054510 (2012).

    ADS  Google Scholar 

  59. Probst, S., Song, F. B., Bushev, P. A., Ustinov, A. V. & Weides, M. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Rev. Sci. Instrum. 86, 024706 (2015).

    ADS  Google Scholar 

  60. Scigliuzzo, M. et al. Primary thermometry of propagating microwaves in the quantum regime. Phys. Rev. X 10, 041054 (2020).

    Google Scholar 

  61. McKay, D. C. et al. Universal gate for fixed-frequency qubits via a tunable bus. Phys. Rev. Appl. 6, 064007 (2016).

    ADS  Google Scholar 

  62. Eichler, C. et al. Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011).

    ADS  Google Scholar 

  63. Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A 86, 032106 (2012).

    ADS  Google Scholar 

  64. Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nat. Phys. 9, 345–348 (2013).

    Google Scholar 

  65. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D. 26, 1817–1839 (1982).

    ADS  Google Scholar 

  66. Chow, J. M. et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012).

    ADS  Google Scholar 

  67. Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    ADS  Google Scholar 

  68. Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  69. Reuer, K. et al. Realization of a universal quantum gate set for itinerant microwave photons. Phys. Rev. X 12, 011008 (2022).

    Google Scholar 

  70. Yan, H. et al. Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128, 080504 (2022).

    ADS  Google Scholar 

  71. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  72. Dür, W. Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63, 020303 (2001).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge D. Campbell for his contributions to the infrastructures used in this experiment, and D. K. Kim for assisting with device fabrication. This research was funded in part by the AWS Center for Quantum Computing, US Army Research Office grant no. W911NF-18-1-0411, the DOE Office of Science National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under contract no. DE-SC0012704 and the Department of Defense under Air Force contract no. FA8702-15-D-0001. B.K. gratefully acknowledges support from the National Defense Science and Engineering Graduate Fellowship programme. A.A. gratefully acknowledges support from the P.D. Soros Fellowship programme. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and should not be interpreted as necessarily representing the official policies or endorsements of the US Government.

Author information

Authors and Affiliations

Authors

Contributions

B.K. designed the experiment procedure. B.K. and A.A. designed the devices, conducted the measurements, analysed the data and wrote the manuscript. A.D.P. provided theory support. A.M. and B.M.N. performed sample fabrication. Y.S., D.A.R., K.S. and J.I-J.W. assisted with the experimental set-up. R.W. developed the custom FPGA code used to obtain the data. J.B., A.K. and A.V. assisted with the automation of the device calibration. M.E.S., J.L.Y., T.P.O., S.G., J.A.G. and W.D.O. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bharath Kannan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Giuseppe Calajò, Mathieu Juan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and discussion and Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, B., Almanakly, A., Sung, Y. et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023). https://doi.org/10.1038/s41567-022-01869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01869-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing