Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crossed Luttinger liquid hidden in a quasi-two-dimensional material

Abstract

Although the concept of the Luttinger liquid (LL) describing a one-dimensional (1D) interacting fermion system1,2 collapses at higher dimensions, it has been proposed to be relevant to enigmatic problems in condensed matter physics including the normal state of cuprate superconductors3,4,5, unconventional metals6,7 and quantum criticality8,9. Here we investigate the electronic structure of quasi-2D η-Mo4O11, a charge-density wave material, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculations. We show a prototypical LL behaviour originating from the crossed quasi-1D chain arrays hidden in the quasi-2D crystal structure. Our results suggest that η-Mo4O11 materializes the crossed LL phase10,11,12 in its normal state, where the orthogonal orbital components substantially reduce the coupling between intersecting quasi-1D chains and therefore maintain the essential properties of the LL. Our finding not only presents a realization of a 2D LL, but also provides a new angle to understand non-Fermi liquid behaviour in other 2D and 3D quantum materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physics in arrays of 1D chains and basic properties of η-Mo4O11.
Fig. 2: Comparison between the experimental and calculated electronic structure of η-Mo4O11.
Fig. 3: LL behaviour in η-Mo4O11.
Fig. 4: Ab initio calculations of the electronic structure and Wannier orbitals of η-Mo4O11.

Similar content being viewed by others

Data availability

The datasets that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    Article  ADS  Google Scholar 

  2. Deshpande, V. V., Bockrath, M., Glazman, L. I. & Yacoby, A. Electron liquids and solids in one dimension. Nature 464, 209–216 (2010).

    Article  ADS  Google Scholar 

  3. Anderson, P. W. ‘Luttinger-liquid’ behavior of the normal metallic state of the 2D Hubbard model. Phys. Rev. Lett. 64, 1839–1841 (1990).

    Article  ADS  Google Scholar 

  4. Anderson, P. W. Hall effect in the two-dimensional Luttinger liquid. Phys. Rev. Lett. 67, 2092–2094 (1991).

    Article  ADS  Google Scholar 

  5. Wuyts, B. et al. Influence of the oxygen content on the normal-state Hall angle in YBa2Cu3Oxn films. Phys. Rev. B 47, 5512–5515 (1993).

    Article  ADS  Google Scholar 

  6. Jiang, H.-C. et al. Non-Fermi-liquid d-wave metal phase of strongly interacting electrons. Nature 493, 39–44 (2012).

    Article  ADS  Google Scholar 

  7. Khait, I., Azaria, P., Hubig, C., Schollwöck, U. & Auerbach, A. Doped Kondo chain, a heavy Luttinger liquid. Proc. Natl Acad. Sci. USA 115, 5140–5144 (2018).

    Article  ADS  Google Scholar 

  8. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005).

    Article  ADS  Google Scholar 

  9. Classen, L., Zaliznyak, I. & Tsvelik, A. M. Three-dimensional non-Fermi-liquid behavior from one-dimensional quantum critical local moments. Phys. Rev. Lett. 120, 156404 (2018).

    Article  ADS  Google Scholar 

  10. Mukhopadhyay, R., Kane, C. L. & Lubensky, T. C. Crossed sliding Luttinger liquid phase. Phys. Rev. B 63, 081103 (2001).

    Article  ADS  Google Scholar 

  11. Gao, B., Komnik, A., Egger, R., Glattli, D. C. & Bachtold, A. Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett. 92, 216804 (2004).

    Article  ADS  Google Scholar 

  12. Zhao, S. et al. Correlation of electron tunneling and plasmon propagation in a Luttinger liquid. Phys. Rev. Lett. 121, 047702 (2018).

    Article  ADS  Google Scholar 

  13. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  14. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  15. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article  ADS  Google Scholar 

  16. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article  Google Scholar 

  17. Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001).

    Article  ADS  Google Scholar 

  18. Schulz, H. J. Phases of two coupled Luttinger liquids. Phys. Rev. B 53, R2959–R2962 (1996).

    Article  ADS  Google Scholar 

  19. Balents, L. & Fisher, M. P. A. Weak-coupling phase diagram of the two-chain Hubbard model. Phys. Rev. B 53, 12133–12141 (1996).

    Article  ADS  Google Scholar 

  20. Bartosch, L. Non-Fermi-liquid behavior of quasi-one-dimensional pseudogap materials. Phys. Rev. Lett. 90, 076404 (2003).

    Article  ADS  Google Scholar 

  21. Imambekov, A. & Glazman, L. I. Universal theory of nonlinear Luttinger liquids. Science 323, 228–231 (2009).

    Article  MATH  Google Scholar 

  22. Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676–679 (2001).

    Article  ADS  Google Scholar 

  23. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  24. Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article  ADS  Google Scholar 

  25. Wang, F. et al. New Luttinger-liquid physics from photoemission on Li0.9Mo6O17. Phys. Rev. Lett. 96, 196403 (2006).

    Article  ADS  Google Scholar 

  26. Ohtsubo, Y. et al. Surface Tomonaga-Luttinger-liquid state on Bi/InSb(001). Phys. Rev. Lett. 115, 256404 (2015).

    Article  ADS  Google Scholar 

  27. Watson, M. D. et al. Multiband one-dimensional electronic structure and spectroscopic signature of Tomonaga-Luttinger liquid behavior in K2Cr3As3. Phys. Rev. Lett. 118, 097002 (2017).

    Article  ADS  Google Scholar 

  28. Kang, L. et al. Band-selective Holstein polaron in Luttinger liquid material A0.3MoO3 (A = K, Rb). Nat. Commun. 12, 6183 (2021).

    Article  ADS  Google Scholar 

  29. Emery, V. J., Fradkin, E., Kivelson, S. A. & Lubensky, T. C. Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160–2163 (2000).

    Article  ADS  Google Scholar 

  30. Mukhopadhyay, R., Kane, C. L. & Lubensky, T. C. Sliding Luttinger liquid phases. Phys. Rev. B 64, 045120 (2001).

    Article  ADS  Google Scholar 

  31. Kane, C. L., Mukhopadhyay, R. & Lubensky, T. C. Fractional quantum Hall effect in an array of quantum wires. Phys. Rev. Lett. 88, 036401 (2002).

    Article  ADS  Google Scholar 

  32. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  33. Fuhrer, M. S. et al. Crossed nanotube junctions. Science 288, 494–497 (2000).

    Article  ADS  Google Scholar 

  34. Kihlborg, L. Studies on molybdenum oxides. Acta Chem. Scand. 13, 954–962 (1959).

    Article  Google Scholar 

  35. Guyot, H., Escribe-Filippini, C., Fourcaudot, G., Konate, K. & Schlenker, C. Charge density wave instabilities in the quasi-two-dimensional metal η-Mo4O11. J. Phys. C Solid State Phys. 16, L1227–L1232 (1983).

    Article  ADS  Google Scholar 

  36. Nogami, Y., Kambe, T., Nagao, N. & Oshima, K. Two incommensurate CDWs in low–dimensional conductor η-Mo4O11. Synth. Met. 120, 1049–1050 (2001).

    Article  Google Scholar 

  37. Gweon, G. H. et al. Hidden one-dimensional electronic structure and non-Fermi-liquid angle-resolved photoemission line shapes of η‐Mo4O11. Phys. Rev. B 72, 035126 (2005).

    Article  ADS  Google Scholar 

  38. Sato, T., Dobashi, T., Komatsu, H., Takahashi, T. & Koyano, M. Electronic structure of η-Mo4O11 studied by high-resolution angle-resolved photoemission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 144-147, 549–552 (2005).

    Article  Google Scholar 

  39. Whangbo, M. H., Canadell, E., Foury, P. & Pouget, J. P. Hidden Fermi surface nesting and charge density wave instability in low-dimensional metals. Science 252, 96–98 (1991).

    Article  ADS  Google Scholar 

  40. Canadell, E. & Whangbo, M. H. Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem. Rev. 91, 965–1034 (1991).

    Article  Google Scholar 

  41. Hill, S. et al. Quantum limit and anomalous field-induced insulating behavior in η-Mo4O11. Phys. Rev. B 55, 2018–2031 (1997).

    Article  ADS  Google Scholar 

  42. Ke, J. Z. et al. Reconstruction of the Fermi surface induced by high magnetic field in the quasi-two-dimensional charge density wave conductor η−Mo4O11. Phys. Rev. B 102, 245135 (2020).

    Article  ADS  Google Scholar 

  43. Ke, J. Z. et al. Single crystal growth and electrical transport properties of η-Mo4O11. J. Alloys Compd. 835, 155417 (2020).

    Article  Google Scholar 

  44. Fujisawa, H., Kumigashira, H., Takahashi, T., Kurita, R. & Koyano, M. High-resolution angle-resolved photoemission study of η-Mo4O11. Surf. Rev. Lett. 09, 1041–1045 (2002).

    Article  ADS  Google Scholar 

  45. Orgad, D. Spectral functions for the tomonaga-luttinger and luther-emery liquids. Philos. Mag. B 81, 377–398 (2001).

    Article  ADS  Google Scholar 

  46. Canadell, E., Whangbo, M. H., Schlenker, C. & Escribe-Filippini, C. Band electronic structure study of the electronic instability in the Magneli phase molybdenum oxide Mo4O11. lnorg. Chem. 28, 1466–1472 (1989).

    Article  Google Scholar 

  47. Guyot, H., Schlenker, C., Pouget, J. P., Ayroles, R. & Roucau, C. Evidence for an incommensurate charge density wave instability in η-Mo4O11. J. Phys. C: Solid State Phys. 18, 4427–4434 (1985).

    Article  ADS  Google Scholar 

  48. Hiraoka, N., Buslaps, T., Honkimäki, V., Guyot, H. & Schlenker, C. Hidden one dimensionality in Fermi surfaces of η−Mo4O11 observed by Compton scattering experiments. Phys. Rev. B 71, 125417 (2005).

    Article  ADS  Google Scholar 

  49. McConnell, A. W., Clayman, B. P., Homes, C. C., Inoue, M. & Negishi, H. Polarized reflectance measurements of the CDW transitions in η−Mo4O11 and γ−Mo4O11. Phys. Rev. B 58, 13565–13573 (1998).

    Article  ADS  Google Scholar 

  50. Kuzmenko, I., Gredeskul, S., Kikoin, K. & Avishai, Y. Plasmon excitations and one- to two-dimensional crossover in quantum crossbars. Phys. Rev. B 67, 115331 (2003).

    Article  ADS  Google Scholar 

  51. Giamarchi, T. Theoretical framework for quasi-one dimensional systems. Chem. Rev. 104, 5037–5056 (2004).

    Article  Google Scholar 

  52. Inoue, M., Ōhara, S., Horisaka, S., Koyano, M. & Negishi, H. Transport properties of quasi-two-dimensional Mo4O11 crystals. Phys. Status Solidi B Basic Solid State Phys. 148, 659–671 (1988).

    Article  ADS  Google Scholar 

  53. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  55. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  MATH  Google Scholar 

  56. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  ADS  Google Scholar 

  57. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Chen, D.H. Lu, T. Kim, C. Cacho, Z. Sun, J. Fujii and I. Vobornik for helping with ARPES experiments. This work is funded by the National Natural Science Foundation of China (Grants No. 12274251 and No. 11774190), the National Key R&D Program of China (Grant No. 2017YFA0304600) and the EPSRC Platform Grant (Grant No. EP/M020517/1). L.X.Y. acknowledges support from the Tsinghua University Initiative Scientific Research Program. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. We thank Diamond Light Source for access to beamline I05 (Proposal No. SI22375-1). We acknowledge Elettra Sincrotrone Trieste for providing access to beamline APE.

Author information

Authors and Affiliations

Authors

Contributions

L.X.Y. conceived the experiments. X.D. and L.K. carried out ARPES measurements with the assistance of J.S.Z., X.G., R.Z.X., Q.Q.Z., Z.X.Y., W.X.Z., Y.D.L., S.M.H., D.P., M.X.W. and Z.K.L. Data analyses on the ARPES results and the ab initio calculations were performed by X.D. Single crystals were synthesized and characterized by Y.Y.L. and Y.B.C. The first draft of the paper was written by X.D.; L.X.Y. and Y.L.C. contributed to the revision of the manuscript. All authors contributed to the scientific planning and discussion.

Corresponding authors

Correspondence to Y. L. Chen or L. X. Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Thierry Giamarchi, Rafael Freitas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1 and 2 and Notes 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Kang, L., Lv, Y.Y. et al. Crossed Luttinger liquid hidden in a quasi-two-dimensional material. Nat. Phys. 19, 40–45 (2023). https://doi.org/10.1038/s41567-022-01829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01829-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing