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Implementing quantum algorithms on realistic devices requires translating 
high-level global operations into sequences of hardware-native logic 
gates, a process known as quantum compiling. Physical limitations, such as 
constraints in connectivity and gate alphabets, often result in unacceptable 
implementation costs. To enable successful near-term applications, it is 
crucial to optimize compilation by exploiting the capabilities of existing 
hardware. Here we implement a resource-efficient construction for a 
quantum version of AND logic that can reduce the compilation overhead, 
enabling the execution of key quantum circuits. On a high-scalability 
superconducting quantum processor, we demonstrate low-depth synthesis 
of high-fidelity generalized Toffoli gates with up to 8 qubits and Grover’s 
search algorithm in a search space of up to 64 entries. Our experimental 
demonstration illustrates a scalable and widely applicable approach to 
implementing quantum algorithms, bringing more meaningful quantum 
applications on noisy devices within reach.

Quantum algorithms are predicted to provide a computational 
speed-up over their classical counterparts. To be implemented, these 
algorithms need to be compiled on specific quantum hardware to 
decompose global operations into the naturally available elementary 
gates. Given the stringent resource constraints offered by the noisy 
intermediate-scale quantum (NISQ) technology foreseeable in the next 
5–10 years1, it is essential to optimize the use of every qubit and every 
gate cycle to enable successful near-term applications2. One effective 

strategy is to fully explore the hardware capabilities and diversify the 
available gate alphabets to optimize compilation3–5.

Several global or multi-qubit operations are textbook circuit com-
ponents essential for building quantum algorithms6. The best-known 
examples are the quantum arithmetic circuits used in Shor’s factoring 
algorithm7 and the multiply controlled gates used in Grover’s search 
algorithm8. The latter are nontrivial multi-qubit quantum logics that 
perform unitary operations on target qubits conditioned on the states 
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various systems, a scalable synthesis has never been experimentally 
realized because of the prohibitive implementation cost. A scheme 
that is, at the same time, hardware-efficient, low-depth, easy to control 
and compatible with state-of-the-art hardware31–33 is yet to be realized. 
We note that native global entangling operations are available in ion 
traps, which have unique all-to-all connections34, and in specially 
designed superconducting circuits35. However, these global operations 
are based on pairwise interactions and thus not equivalent to the  
multiply controlled gate, although they may be used for faster 
synthesis36.

In this Article we introduce a quantum version of the AND (QuAND) 
gate, a novel gate type that, as inspired by ref. 28, utilizes an ancilla level 
for temporary information storage only. The QuAND gate enables a 
scaling advantage in the circuit depth when synthesizing arithmetic 
circuits and multiply controlled gates. We experimentally implement 
QuAND gates on a superconducting quantum processor featuring 
simplified wiring and low crosstalk, and demonstrate a linear-depth 
synthesis of generalized Toffoli gates with up to eight qubits, that is, 
a total of seven control qubits. Our demonstration is large in size and 
shows high performance (truth table fidelity: 89.1%, 53.2% and 39.1% 
for n = 4, 6 and 8, respectively). Using these gates, we perform Grov-
er’s search algorithm with multiple amplification cycles and achieve 
significant success probabilities (46.8% and 3.9% for searches of 16 
and 64, respectively), demonstrating the feasibility of our method 
for scaled applications. Note that alternative efficient compilation 
schemes have been proposed in recent theoretical studies11,37. However, 
these schemes generally require the manipulation of a multi-level sys-
tem with high degrees of freedom, adding considerable operational  
complexity.

Simplifying quantum logic using QuAND gates
The logic AND operation is a basic ingredient for designing both clas-
sical and quantum algorithms. Unfortunately, it cannot be directly 
implemented on qubits because of the reversibility of quantum oper-
ations. One workaround is to extract it from a Toffoli gate at the cost 
of an extra qubit6. This overhead hinders scaled implementation on 
realistic hardware. In this Article we propose a resource-efficient 
QuAND gate scheme (Fig. 1a) in which one of the two outputs registers 
the AND result of the inputs, that is, |A&B⟩, and the other output |C⟩ 
spans three different states, in our case, |1⟩, |2⟩ and |0⟩ for input states 
|00⟩, |01⟩ and |10⟩, respectively. The use of the ancilla level |2⟩ preserves 
reversibility; the reverse QuAND gate simply switches the inputs and 
outputs. We refer to the AND-value qubit as the ‘parent’ and the other 
qubit as the ‘child’. The circuit notation, truth table and decomposition 
schemes of the QuAND gate and its reversal are illustrated in Fig. 1a. 
Here we decompose the QuAND gate (or its reversal) into a single-qubit 
X gate in front of (or after) an iSWAP-like operation between |11⟩ and 
|20⟩ (denoted iSWAP11−20), which is naturally available on our hardware, 
as shown later.

One direct application of a QuAND gate is to simplify the compila-
tion of large gate operations, in particular, multiply controlled gates, 
which are experimentally challenging to realize and the focus of this 
study. Figure 1b shows the circuit decomposition for an n-qubit CZ gate 
on a one-dimensional (1D) qubit chain divided into three stages: embed-
ding, the controlled-unitary operation and recovery. Let |s⟩ = |s1s2...sn⟩ 
(si = 0, 1) denote a basis state at the input. During embedding, we apply 
QuAND gates sequentially to the chain from both ends inward. At the 
end of the QuAND sequence, the two root parents in the middle, Qk and 
Qk + 1, temporarily register the AND result of all the qubits from the upper 
and lower halves of the chain, respectively. In other words, ||s′k⟩ = ||∧k

i=1si⟩ 
and ||s′k+1⟩ = ||∧n

i=k+1si⟩, where ∧ is the notation for the global AND opera-
tion. Therefore, the subsequent CZ gate, which flips the wavefunction 
sign when ||s′ks

′
k+1⟩ = |11⟩, is effectively a phase flip conditioned on all 

qubits, (−1)∧si. The recovery sequence then transfers the state back  
to the original binary encoding and completes an n-qubit CZ gate.  

of all the control qubits. Relevant applications include quantum error 
correction9–11, quantum simulation12 and quantum machine learning13. 
One brute-force approach for an extensible implementation of these 
large operations is to decompose them into a finite set of universal 
gates. For example, the generalized Toffoli gate, that is, the n-qubit 
controlled-NOT (CNOT) gate, can be constructed using quadratically 
many (𝒪𝒪(n2)) two-qubit CNOT gates plus single-qubit gates on a qubit 
array with all-to-all connections14 and even more gates on devices with 
nearest-neighbour couplings15. A more efficient approach is to concat-
enate together small Toffoli gates, assisted by ancilla qubits6,16. Leaving 
aside the extra resources needed, it is challenging to achieve 
high-quality small Toffoli gates. Apart from brute-force decomposition, 
small Toffoli gates may be obtained via one-step manipulations17–23 or 
by leveraging either, again, ancilla qubits24,25 or ancilla levels26–30. 
Despite successful demonstrations of single small Toffoli gates in 

a b
Embed Recover

QuAND truth table

c

Reverse QuAND gate

QuAND gate

Root parent

|11        |20

Ti
m

e

iSWAP11–20

CZ

&

& &

&

&

& &

&

&

& &

&

1

2

3

k – 1

k + 1

k + 2

n – 2

n – 1

n

k

A

|C |A

|C

|A&B

|B|A&B

B C A&B
0
0
0

0
0

00
0

1

1
1
1

0
2

1

1

&

X

X

&

|A

|B

←→

Fig. 1 | Simplifying compilation using the quantum version of the AND 
(QuAND) gate. a, Circuit notation, truth table and decomposition of the QuAND 
gate and its reversal. The AND-value qubit, indicated by an &, is referred to as the 
‘parent’, and the other qubit is referred to as the ‘child’. A QuAND gate is indicated 
by an arrow pointing from the child to the parent, with an arrow in the opposite 
direction indicating a reverse QuAND gate. Both can be synthesized with a 
single-qubit X gate and an iSWAP-like operation between |11⟩ and |20⟩, which is 
indicated by a double-cross sign with a dashed cross on the child qubit. b, Circuit 
decomposition of an n-qubit controlled-Z (CZ) gate on a 1D qubit chain using a 
sequence of QuAND gates, a CZ gate and a sequence of reverse QuAND gates, 
shown here with time progressing from left to right. During embedding, the 
sequentially applied QuAND gates register the AND results of all the qubits from 
the upper and lower halves of the chain onto the two root parents, Qk and Qk + 1, 
respectively. The embedded information is later released via the reverse QuAND 
gates to recover the original binary encoding. The CZ gate is only effective when 
all qubits are in state |1⟩. c, Sketch showing a quantum processor with qubits 
connected in an arbitrary topology. A branching tree is enacted for implementing 
the QuAND gate sequence (arrows) with time progressing from dark blue to light 
green. The CZ gate is performed between the two root parents. The QuAND gate 
could also be performed across multiple processors (arrows pointing from 
outside) to efficiently implement global operations on a larger quantum 
network.
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There are a total of 2n − 3 two-qubit gates in this sequence. The linear 
(𝒪𝒪(n)) circuit depth (the number of two-qubit gate cycles) as a result of 
using QuAND gates manifests a scaling advantage over the quadratic 
depth when using only CNOT gates14. Note that the ancilla levels are 
used here only for the temporary storage of the state information and 
that only a state-transfer operation is needed, which is in contrast to 
schemes that require more complex, hard-to-engineer operations with 
ancilla levels29,30,37. Moreover, other types of multiply controlled gate, 
such as the generalized Fredkin (controlled-SWAP) gate, can be synthe-
sized similarly. In fact, any classical circuit, such as Boolean logic and 
arithmetic circuits, can be constructed efficiently using QuAND and 
single-qubit gates, because the classical NAND gate is universal. Exam-
ples of quantum adder circuits are shown in Supplementary Section I.

An even more impressive scaling advantage can be achieved on 
qubit arrays with higher connectivity. To see this, it is helpful to first 

identify the key idea of our proposal, that is, to enact a branching tree 
graph on an arbitrarily connected qubit array and apply QuAND gates 
sequentially to register the AND results of neighbouring qubits onto 
the parents, layer by layer, from the leaves up to the root, as illustrated 
in Fig. 1c. Ignoring the constant, the optimal circuit depth is then equiv-
alent to the depth of the tree. For example, the circuit depth can be 
reduced to 𝒪𝒪(√n) on a 2D square array and to 𝒪𝒪(log2n) on a binary tree 
(Supplementary Section II); such polynomial or exponential speed-up 
in compiling global operations can constitute a huge boost for relevant 
quantum applications. In addition, because this scheme only requires 
that qubits be connected, it is well suited to a distributed quantum 
network where only sparse connections are likely to be available.

Implementing a QuAND gate with 
superconducting qubits
Our experimental device (Fig. 2a), tested inside a dilution refrigera-
tor at a base temperature of 10 mK, consists of eight fixed-frequency 
transmon qubits38, known for long coherence and simplified control, 
arranged in a ladder array and interconnected via ten frequency-tunable 
couplers. The two couplers in the middle have no control lines, resulting 
in the qubit array having a ring topology. Each qubit has a dedicated 
readout resonator, and all the resonators share a common feed line 
enabling a multiplexed dispersive readout. The qubit frequencies 
are arranged alternately between a red band (6.2–6.5 GHz) and a blue 
band (7.0–7.3 GHz) along the ring; such frequency planning helps sup-
press microwave crosstalk. The qubits are strongly coupled (with an 
interaction strength of g/2π ≈ 100 MHz) to their adjacent couplers, 
which are tunable via their flux biases Φe. The couplers are designed 
to turn off the inter-qubit coupling via multi-path interference39 near 
their maximum frequencies (8.0–8.4 GHz) at Φe = 0, which resolves 
the frequency-crowding problem and reduces the nearest-neighbour 
ZZ crosstalk down to ~50 kHz. In addition, the use of tunable couplers 
enables fast two-qubit gates between the fixed-frequency qubits, for 
example, the adiabatic CZ gate40,41. We use a shared control line to 
deliver the diplexed signals for both the qubit (4–8 GHz) and coupler 
(DC-1 GHz) control; these signals are synthesized at room temperature 
and transmitted to the device inside the dilution refrigerator. This 
design substantially simplifies the wiring effort both on the chip and 
inside the refrigerator, promising higher scalability. See Supplementary 
Section III for details concerning the device and experimental set-up.

The QuAND and iSWAP11−20 gates on our device were implemented 
using coupler-assisted level transitions. According to the tri-mode 
(||qubit, coupler, qubit⟩ ) notation, the iSWAP11−20 gate is a full swap 
operation between |101⟩ and |200⟩, which is realized by a flux pulse sent 
to the coupler. To activate such a transition we applied a flux pulse to 
the coupler, where the pulse consisted of an adiabatic rise and fall (40 ns 
each) separated by a sinusoidal pulse (30 ns), as illustrated in Fig. 2b. 
Under this pulse, as shown by the thin black line with embedded arrow-
heads, the system state first follows an adiabatic excursion on state 
|101⟩ from the idling bias Φe = 0 Φ0 to Φe = 0.26 Φ0, then transits to |200⟩ 
via a parametric drive resonant with the instantaneous frequency gap 
between |101⟩ and |200⟩, and eventually adiabatically returns to the 
idling bias. There are two major concerns when choosing the transition 
bias. First, the flux-induced |101⟩ ↔ |200⟩ transition is inhibited at Φe = 0 
but is significantly enhanced at a sufficiently large bias as a result of 
wavefunction hybridization, as is evident by the strong bending of the 
energy levels42. Second, a proper bias is critical to avoid spurious transi-
tions (Supplementary Section IV).

In the experiment, we calibrated the iSWAP11−20 gate by optimizing 
both the frequency and the amplitude of the parametric pulse. An 
example of the continuous swapping between |11⟩ and |20⟩ as a function 
of the pulse amplitude Ap is shown in Fig. 2c. The average observed 
transition error of 2.7% is primarily caused by energy relaxation during 
the pulse. All data presented here were corrected to account for the 
state preparation and measurement error. Note that, so far, we have 
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Fig. 2 | Implementing the QuAND gate on a high-scalability superconducting 
quantum processor. a, False-colour micrograph of the device. Red and blue 
indicate the lower and higher fixed-frequency transmon qubits, respectively.  
b, Eigenenergies of states |101⟩ and |200⟩ (tri-mode notation) in a qubit–coupler–
qubit subsystem versus the coupler-flux bias, Φe. The thin black line with the 
embedded arrowheads indicates the state trajectory for the iSWAP11−20 pulse sent 
to the coupler (inset), where Ap is the amplitude of the parametric drive on the 
flux pulse plateau. c, Measured final state probabilities in states |11⟩ and |20⟩ after 
the iSWAP11−20 pulse versus the parametric drive amplitude. The dashed line 
indicates a full iSWAP11−20 operation.
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ignored the phase factor of the iSWAP11−20 gate. In fact, a pair of 
iSWAP11−20 gates exchange the excitation back and forth, leading to a 
conditional phase on state |11⟩, which can be calibrated away by adjust-

ing the relative phase between the two iSWAP11−20 gates. Supplementary 
Section V provides details concerning the gate scheme, calibration 
procedures and data processing.
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Low-depth synthesis of multi-qubit Toffoli gates
Using calibrated QuAND gates, we demonstrate the low-depth synthe-
sis of a generalized Toffoli gate, which is equivalent to the n-qubit CZ 
circuit described in Fig. 1b, with two additional single-qubit gates. 
Figure 3a illustrates how we compile, on the 8-qubit ring, an n-qubit 
CZ gate with incremental size (n = 4, 6 and 8) in linear time steps. We 
characterize these large gates by measuring their truth tables, Uexp, 
that is, the output state probability distribution for each of the 2n input 
states, which are shown in Fig. 3b. The truth-table fidelities, 
ℱtt =

1
2n
Tr(UexpUideal) , are 89.1%, 53.2% and 39.1% for n = 4, 6 and 8, 

respectively. We note that the 4-qubit Toffoli truth-table fidelity is 
higher than the measured gate fidelity (83.6%) from process tomog-
raphy (Supplementary Section VI), as a result of underestimated phase 
errors when measuring the truth table. The relaxation-limited gate 
fidelities (total duration) for the 4-qubit, 6-qubit and 8-qubit Toffoli 
gates are 92.5% (0.4 μs), 66.7% (1.3 μs, staggered pulses) and 62.3% 
(1.1 μs), respectively, and are responsible for ~70% of the total error; 
the remaining error is due in part to dephasing and in part to stray 
couplings42–44.

Grover’s search algorithm
Finally, we performed Grover’s search algorithm as a complementary 
method to benchmark our multi-qubit gates. The core steps of this 
algorithm encode a solution bit-string j with a phase oracle 
Oj = ∑s≠j|s⟩⟨s| − |j⟩⟨j|, a unitary that accesses the input function, and 
amplify the probability of finding |j⟩ via phase diffusion, with each step 
containing an n-qubit CZ gate (Fig. 4a); these two steps may be repeated 
for further amplification. Here, the phase oracle performs a conditional 
phase flip on |j⟩; therefore, an arbitrary oracle can be constructed from 
an n-qubit CZ gate with additional pairs of X gates applied to qubits 
being conditioned on |0⟩ instead of |1⟩. We note that there is an alterna-
tive way to implement Grover’s search by replacing the diffuse opera-
tor with single-qubit gates at the cost of more oracle queries45.

Figure 4b shows the results of the 4-qubit and 6-qubit single- 
solution Grover’s search algorithms with one oracle-amplification 
cycle (the Supplementary Information provides extended data of 
the multi-solution Grover’s search). The diagonal matrix elements 
correspond to the probabilities of finding the correct states, that is, 
the algorithm success probability (ASP), and are substantially higher 
than the other elements, on average 34.2% versus 4.4% for the 4-qubit 
Grover’s search and 3.9% versus 1.5% for the 6-qubit Grover’s search, 
showing the effectiveness of the amplification. Because of its insuf-
ficient fidelity, the 8-qubit Grover result (not shown) does not display 
a significant ASP gain.

To optimize the ASP, we tested Grover’s search algorithm with 
multiple rounds of amplification. As shown in Fig. 4c, the average ASP 
in the 4-qubit case shows a clear improvement to 46.8% with one addi-
tional cycle (M = 2), and a clear dependence is visible up to ten cycles, 
that is, a total of 20 CCCZ gates, due to the high gate fidelity. Ignoring 
contributions from the single-qubit gate error, which is estimated to 
be 0.14% from simultaneous randomized benchmarking, we developed 
a simplified model for estimating ASP (Supplementary Section VII):

ASP = ℱ2Msin2((2M + 1)arcsin (2−
n

2 )) + 1 − ℱ2M

2n , (1)

where ℱ is the n-qubit CZ gate fidelity. Fitting the data to equation (1) 
gives ℱ = 84.4% and 50.9% for the 4-qubit and 6-qubit cases, respec-
tively, which are close to the above-measured truth-table fidelities.

Discussion
The low-depth circuit synthesis using the QuAND logic enabled our 
implementation of multiply controlled gates and Grover’s search 
algorithm at a high scale, confirming the feasibility of a scalable and 
resource-efficient approach to simplify algorithm compilation. At the 

essence of our scheme is engineering a coherent, selective transition 
between one of the computational levels and an ancilla level, enabling 
the quantum analogue of AND logic. Therefore, the scheme can be 
applied to other quantum computing platforms by encoding the ancilla 
level using, for example, different internal states in ion traps46, path 
variation in optical systems26, valley freedom in Si/SiGe systems47 and 
nuclear spin in the Si:P system48. This study should not only stimulate 
interest in exploring alternative compilation schemes using QuAND 
logic, but should also help reduce hardware-related challenges, in 
particular, the connectivity problem for which solid-state devices have 
long been criticized. With further improvements to fidelity, our work 
will help close the gap between most anticipated near-term applica-
tions and available NISQ devices.
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Methods
Coupler-assisted iSWAP11−20

In the tri-mode (Q–C–Q) system, the static part of the Hamiltonian in 
the laboratory frame is (ℏ = 1):

Hstatic = ∑
i=1, 2, c

(ωia
†
i
ai +

αi

2
a†
i
a†
i
aiai)

+ ∑
i=1, 2

gic(a†i + ai)(a†c + ac) + g12(a†1 + a1)(a†2 + a2).
(2)

Here ωi and αi denote the frequency and the anharmonicity of mode i, 
and a†

i
 is the corresponding annihilation(creation) operator.  

The qubits Q1 and Q2 couple to the coupler with coupling strength g1c 
and g2c, respectively, and to each other with a coupling strength g12. 
The time-dependent drive Hdrive = Hadia(t) + Hdia(t) can be divided into 
an adiabatic part Hadia(t) and a diabatic part, that is, the parametric 
drive, Hdia(t) = ξ(t)a†cac = A(t) cos(ωdt + θ)a†cac . ωd and θ denote the  
frequency and the phase of the parametric pulse, respectively. Note 
that we have absorbed into the adiabatic part a drive-amplitude- 
dependent frequency shift, which arises from the nonlinear relation 
between the coupler frequency and the applied flux. Following  
the instantaneous eigenbasis defined by Hstatic + Hadia(t), we may rewrite 
the approximate Hamiltonian of the two-level (|i⟩ and |j⟩) system:

HTLS(t) =
1
2 [∆ij + ξ(t)δij] σ̂z + ξ(t)(nijσ̂− + h.c.), (3)

where σ̂z = |i⟩⟨i| − | j⟩⟨ j|, σ̂− = |i⟩ ⟨ j|, Δij is the instantaneous level spacing, 
nij = ⟨i|a†cac | j⟩ and δij = nii − njj.

Defining the unitary operator Λ(t) = eiσ̂z[∆ij t+ζ(t)δij ]/2 , where 
ζ(t) = ∫t

0 ξ(t′)dt′ and assuming a constant drive amplitude A(t) = b, we 
can express the effective Hamiltonian in the rotating frame as

H′
TLS(t) = ΛHTLSΛ† + i∂tΛΛ† =

1
2 (Ω̃ σ̂− + h.c.), (4)

where Ω̃ = b [J0(
bδij

ωd
) + J2(

bδij

ωd
)]nijei[( ij− d)t− ] . In the above equation, we 

have omitted fast oscillating terms and high-order Bessel terms in the 
Jacobi–Anger expansion. Here, it can be seen that the effect of the 
parametric modulation is similar to a Rabi drive between the two 
selected levels in the instantaneous eigenframe.

Under the resonant condition Δij − ωd = 0, the corresponding uni-
tary operator in this subspace is

U′
TLS = (

cos(Ωt/2) −ie−iθsin(Ωt/2)

−ieiθsin(Ωt/2) cos(Ωt/2)
), (5)

where Ω = |Ω̃| after ignoring an irrelevant initial phase from nij. The 
dynamics is a coherent Rabi cycling with an effective Rabi frequency 
Ω, in which one can swap excitation between the two levels. A full  
excitation swap is realized by setting Ωt  = π, leading to 
U′

TLS = −ie−iθ|i⟩⟨ j| − ieiθ| j⟩⟨i|. Note that the phase of the Rabi drive can be 
controlled by the phase of the parametric drive θ.

Phase calibration of the QuAND gate
From equation (5), the coupler-assisted iSWAP11−20 operation can be 
expressed by a unitary −ie−iθ|11⟩⟨20| − ieiθ|20⟩⟨11|, where the phase θ is 
controlled by the parametric drive. Because the ancilla state |20⟩ is used 
only for temporary storage, the individual phase is irrelevant and only 
the relative phase between two iSWAP11−20 gates matters. Two consecu-
tive iSWAP-like gates (with phases θ1 and θ2) cause the state evolution 
to follow |11⟩ → −ie−iθ1 |20⟩ → −ei(θ2−θ1)|11⟩, restoring the population dis-
tribution in the end but with an additional phase factor. Viewed in the 
computational subspace (|00⟩, |01⟩, |10⟩, |11⟩), the extra phase on |11⟩ 
becomes a conditional phase, which is unwanted if our goal is to retain 

an identity operation as prescribed in the QuAND scheme. The condi-
tional phase may be eliminated by letting θ2 − θ1 = π. However, in practi-
cal implementations, there are a few more details to consider. First, 
the |20⟩ state is at a different energy from the |11⟩ state, and an additional 
phase accumulates during the idling period between the two iSWAP11−20 
gates. After the second iSWAP11−20 gate, this phase shows up as a condi-
tional phase on |11⟩. Besides idling, an extra phase may also accumulate 
during the period of frequency modulation. Fortunately, we do not 
need to measure each of these contributions for correction. These 
phases can be grouped together as a total conditional phase, which we 
can calibrate away by sweeping θ2 (assuming an arbitrary θ1) while 
measuring the final conditional phase in the conditional Ramsey experi-
ment. Further discussion on the calibration procedures is provided in 
Supplementary Section V.
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