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Observation of vortices and vortex stripes in 
a dipolar condensate

Lauritz Klaus    1,2,4, Thomas Bland    1,2,4, Elena Poli    2, Claudia Politi1,2, 
Giacomo Lamporesi    3, Eva Casotti    1,2, Russell N. Bisset    2, 
Manfred J. Mark    1,2 and Francesca Ferlaino    1,2 

Quantized vortices are a prototypical feature of superfluidity that have 
been observed in multiple quantum gas experiments. But the occurrence of 
vortices in dipolar quantum gases—a class of ultracold gases characterized 
by long-range anisotropic interactions—has not been reported yet. Here 
we exploit the anisotropic nature of the dipole–dipole interaction of 
a dysprosium Bose–Einstein condensate to induce angular symmetry 
breaking in an otherwise cylindrically symmetric pancake-shaped trap. 
Tilting the magnetic field towards the radial plane deforms the cloud into an 
ellipsoid, which is then set into rotation. At stirring frequencies approaching 
the radial trap frequency, we observe the generation of dynamically 
unstable surface excitations, which cause angular momentum to be pumped 
into the system through vortices. Under continuous rotation, the vortices 
arrange into a stripe configuration along the field, in close agreement with 
numerical simulations.

Since the first experiments on gaseous Bose–Einstein condensates 
(BECs), the observation of quantized vortices has been considered 
the most fundamental and defining signature of the superfluid nature 
of such systems. Their very existence sets a unifying concept encom-
passing a variety of quantum fluids from liquid helium1 to the core of 
neutron stars2 and from superconductors3 to quantum fluids of light4. 
Their classical counterparts have as well fascinated scientists from dif-
ferent epochs and fields as vortices are found in many scales of physical 
systems, from tornadoes in the atmosphere to ferrohydrodynamics.

In the quantum realm, a quantized vortex may emerge as a unique 
response of a superfluid to rotation. It can be understood as a type 
of topologically protected singularity with a 2π phase winding that 
preserves the single-valuedness of the superfluid wave function and 
the irrotational nature of its velocity field. In contact-interacting BECs, 
vortical singularities have been observed experimentally in the form of 
single vortices5,6, vortex–antivortex pairs7, solitonic vortices8,9, vortex 
rings10 and vortex lattices6,11 using a number of different techniques. 
Moreover, vortices play a fundamental role in the description of the 
Berezinskii–Kosterlitz–Thouless transition in two-dimensional (2D) 

systems12, as well as in the evolution of quantum turbulence13,14, and 
have been observed in interacting Fermi gases along the Bose-Einstein 
condensate to Bardeen-Cooper-Schrieffer crossover8,15.

Recently, a new class of ultracold quantum gases are being created 
in various laboratories around the world, using strongly magnetic 
lanthanide atoms16,17. Such a system, providing a quantum analogue 
of classical ferrofluids, enables access to the physics of dipolar BECs, 
in which atoms feature a strong long-range anisotropic dipole–dipole 
interaction (DDI)18,19 on top of the traditional contact-type isotropic 
one. This intriguing platform provided the key to observe, for exam-
ple, extended Bose–Hubbard dynamics20, roton excitations21–23, the 
quantum version of the Rosensweig instability24 and supersolid states 
of matter25–28, and is foreseen to host novel phenomena for quantum 
simulation and metrology18,19.

The dipolar interaction is predicted to also intimately change the 
properties of vortices in quantum gases29. For instance, theoretical 
works predict single vortices to exhibit an elliptic-shaped core for a 
quasi-2D setting with in-plane dipole orientation30–33 or the presence 
of density oscillations around the vortex core induced by the roton 
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smoking gun of superfluidity in supersolid states41–43. However, despite 
these intriguing predictions, vortices in dipolar quantum gases have 
not been observed until now.

This Article presents the experimental realization of quan-
tized vortices in a dipolar BEC of highly magnetic dysprosium (Dy) 
atoms. Following a method proposed in ref. 40, extended to arbitrary 
magnetic-field angles in ref. 44, we show that the many-body phenom-
enon of magnetostriction45, genuinely arising from the anisotropic 
DDI among atoms, provides a natural route to rotate the systems and 
nucleate vortices in a dipolar BEC. We carry out studies on the dynam-
ics of the vortex formation, which agree very well with our theoretical 
predictions. Finally, we observe one of the earliest predictions for 
vortices in dipolar BECs: the formation of vortex stripes in the system.

In non-dipolar gases, quantized vortices have been produced using 
several conceptually different techniques, for instance, by rotating 
non-symmetric optical6,11 or magnetic46 potentials, by rapidly shaking 
the gas14, by traversing it with obstacles with large enough velocity7,47, by 
rapidly cooling the gas across the BEC phase transition48,49 or by directly 
imprinting the vortex phase pattern50. Dipolar quantum gases, while 
able to form vortices with these same standard procedures29, also offer 
unique opportunities that have no counterpart in contact-interacting 
gases. Crucially, the DDI gives rise to the phenomenon of magnetostric-
tion in position space45. When dipolar BECs are polarized by an external 
magnetic field B—defining the dipole orientation—the DDI causes an 
elongation of the cloud along the polarization direction. This is a direct 
consequence of the system tendency to favour head-to-tail dipole 
configurations, which effectively reduces the interaction energy19.

Such a magnetostrictive effect provides a simple method to induce 
an elliptic effective potential and drive rotation with a single control 
parameter. This modification of the effective potential is shown in 
Fig. 1a for a BEC in an oblate trap with cylindrical symmetry about the 
z axis. While a non-dipolar BEC takes the same shape as the confining 
trap (Fig. 1a(i)), introducing dipolar interactions with polarization axis 
along z stretches the cloud along this axis yet maintains cylindrical 
symmetry (Fig. 1a(ii)). Tilting the magnetic field leads to a breaking 
of the cylindrical symmetry, resulting in an ellipsoidal deformation 
of the cloud shape, as seen from the density projection onto the x–y 
plane (Fig. 1a(iii)). Finally, under continuous rotation of the magnetic 
field, which we coin ‘magnetostirring’, the condensate is predicted to 
rotate (Fig. 1a(iv)). This unique approach to stir a dipolar condensate 
can eventually lead to the nucleation of vortices40,44, realizing genuinely 
interaction-driven vorticity through many-body phenomena.

We explore this protocol using a dipolar BEC of 162Dy atoms. We 
create the BEC similar to our previous work51 with the distinction that 
here the magnetic-field unit vector, B̂, is kept tilted at an angle of θ = 35° 
with respect to the z axis both during evaporative cooling and magne-
tostirring (Fig. 1a(iii) and Methods). After preparation, the sample 
contains about 2 × 104 condensed atoms confined within a cylindrically 
symmetric optical dipole trap (ODT) with typical radial and axial trap 
frequencies (ω⊥, ωz) = 2π × [50.8(2), 140(1)] Hz. Here, before stirring, 
the magnetostriction is expected from simulations to increase the 
cloud aspect ratio (AR) in the horizontal plane from 1 up to 1.03, whereas 
the trap anisotropy is negligible. We use a vertical (z) absorption imag-
ing to probe the radial (x,y) atomic distribution after a short 
time-of-flight (TOF) expansion of 3 ms. The atom number is instead 
measured using horizontal absorption imaging with a TOF of 26 ms.

Similarly to a rotation of a bucket containing superfluid helium or 
of a smoothly deformed ODT for non-dipolar BECs, magnetostirring 
is predicted to transfer angular momentum into a dipolar BEC40,44. In 
response to such an imposed rotation, the shape of an irrotational 
cloud is expected to elongate with an amplitude that increases with 
the rotation frequency Ω. This phenomenon is clearly visible in our 
experiments, as shown in Fig. 1b. Here we first revolve the tilted B̂ 
around the z axis with a linearly increasing rotation frequency 
(Ω̇ = 2𝜋𝜋 × 50Hz s−1) and observe that the dipolar BEC starts to rotate 

minimum in the dispersion relation30–34. For vortex pairs, the aniso-
tropic DDI is expected to alter the lifetime and dynamics33,35 and can 
even suppress vortex–antivortex annihilation33. These interaction 
properties are predicted to give rise to a vortex lattice structure that can 
follow a triangular pattern30,34, as is typical for non-dipolar BECs11, or a 
square lattice for attractive or zero contact interactions36–38 when the 
DDI is isotropic (dipoles aligned with the rotation axis). A very striking 
consequence of the dipoles tilted towards the plane is the formation of 
vortex stripes30,39,40. Moreover, vortices could provide an unambiguous 
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Fig. 1 | Magnetostirring of a Dy dipolar BEC and evolution of the cloud aspect 
ratio. a, 3D simulations and corresponding shadow on the x-y plane of a 
non-dipolar (i) and dipolar BEC with B ≠ 0 (ii–iv) in a cylindrically symmetric, 
oblate trap. The magnetic-field (green arrows) angle with respect to the z axis 
varies from θ = 0° (ii) to θ = 35° (iii) and rotating at θ = 35° around z (iv). b, Left 
panels show the experimental sequence for the stirring procedure. The grey areas 
indicate the stage during which the images in the right panels were taken. The 
right panels are representative axial absorption images showing the dipolar BEC 
while spinning up the magnetic field for tΩ̇ = [140,430,627,692]ms (top) and 
subsequent constant rotation at Ω = 2π × 36 Hz for tΩ = [0, 6, 11, 17] ms (bottom). 
The rotation of the magnetic field in the x-y plane is indicated by the white line.  
c, (left) Time evolution of the magnetic field rotation frequency. Ω is linearly 
increased to its final value at a speed of Ω̇ = 2𝜋𝜋 × 50Hz s−1. (right) Cloud AR for 
different final rotation frequencies. To mitigate influences of trap anisotropies on 
the AR, a full period at the final rotation frequency is probed. The error bars, 
representing the standard error on the mean after 100 trials per point, are smaller 
than the symbol size. The solid (dashed) black line shows the corresponding eGPE 
simulations with a 2 s (1 s) ramp and as = 110a0, (ω⊥, ωz) = 2π × [50, 130] Hz, and 
N = 15,000. Different colors of the experimental point in the right panel indicate 
the corresponding time during the ramp in the left panel.
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at the same angular speed as the field and deforms with increasing 
elongation (Fig. 1b, top). We then stop the adiabatic ramp at a given 
value of Ω and probe the system under continuous rotation. We now 
find that the cloud continues rotating in the radial plane with an almost 
constant shape (Fig. 1b, bottom). Note that B is held constant at 
5.333(5) G, where we estimate a contact scattering length of about 
as = 111a0, where a0 is the Bohr radius (Methods).

We further explore the response of our dipolar BEC to magneto-
stirring by repeating the measurements in Fig. 1b (top), but stopping 
the ramp at different final values of Ω. The maximum value used for Ω 
approaches ω⊥, corresponding to a ramp duration of 1 s. We quantify 
the cloud elongation in terms of the aspect ratio AR = σmax/σmin, where 
the cloud widths σmax and σmin are extracted by fitting a rotated 2D 
Gaussian function to the density profiles. Figure 1c summarizes our 
results. We observe that initially the AR slightly deviates from 1 due to 
magnetostriction. It then slowly grows with increasing Ω, until a rapid 
increase at around 0.6ω⊥ occurs, as this allows the angular momentum 
to increase, which decreases the energy in the rotating frame52. Sud-
denly, at a critical rotation frequency Ωc ≈ 0.74ω⊥, the AR abruptly col-
lapses back to AR ≈ 1, showing how the superfluid irrotational nature 
competes with the imposed rotation. This critical frequency is close to 
the value found in non-dipolar gases with a rotating elliptical harmonic 
trap, associated with a resonance at the quadrupole frequency53.

To substantiate our observation, we perform numerical simula-
tions of the zero-temperature extended Gross–Pitaevskii equation 
(eGPE)54 (Methods). Quantum and thermal fluctuations are added to 
the initial states, which are important to seed the dynamic instabilities 
once they emerge at large enough Ω; see later discussion. The lines in 
Fig. 1c show our results. The dashed line is obtained through the same 
procedure as the experiment, whereas for the solid line, we halve the 
ramp rate, spending more time at each frequency. Both ramp proce-
dures show quantitatively the same behaviour up to Ω = 0.8ω⊥ and are 
in excellent agreement with the experimental results. The stability of 
the 1 s ramp exceeds the experimentally observed critical frequency. 
We partly attribute this discrepancy to asymmetries of the rotation in 
the experiment that are not present in the simulations, which may lead 
to an effective speed-up of the dynamical instabilities. However, in all 
cases, the AR rapidly decreases to about 1.

The growing AR and subsequent collapse to 1 is a signature of the 
dynamical instability of surface modes, known for being an important 
mechanism for seeding vortices and allowing them to penetrate into 
the high-density regions of rotated BECs52,53,55, as also predicted for 
our dipolar system40. To search for quantum vortices in our system, we 
perform a new investigation where we directly set Ω close to Ωc, aiming 
to trigger the instability at an earlier time when more atoms are con-
densed. We then hold the magnetic-field rotation fixed at this constant 
frequency for a time tΩ. As shown in Fig. 2 (bottom), the cloud rapidly 
elongates, and the density starts to exhibit a spiral pattern, emanating 

from the tips of the ellipsoid. As early as tΩ = 314 ms, clear holes are 
observed in the density profile, forming in the density halo around the 
centre, the first clear indication of vortices in a dipolar gas. These vorti-
ces, initially nucleated at the edge of the sample, persist as we continue 
to stir and eventually migrate towards the central (high-density) region. 
Vortices are still visible in the experiment after 1 s of magnetostirring, 
although our atom number decreases throughout this procedure.  
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Fig. 2 | Observation of vortices in a dipolar BEC. Each column shows the 
simulated (top) and experimental (bottom) images for various rotation times 
tΩ. For the experiment, the atoms are imaged along the z direction. In each 
experimental run, we rotate the magnetic field anticlockwise at Ω = 0.74ω⊥ for 
different rotation times tΩ. The magnetic-field value is kept to B = 5.333(5) G. The 

initial condensed atom number is N = 15,000. The decreasing size of the cloud 
suggests a decrease in atom number. However, for states with vortices or spiral 
shapes, appearing at large tΩ, our bimodal fit to extract the atom number breaks 
down. For the corresponding simulations, the parameters are as = 112a0, trap 
frequencies (ω⊥, ωz) = 2π × [50, 150] Hz, N = 8,000 and Ω = 0.75ω⊥.
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Fig. 3 | Time evolution of the average vortex number, 𝒩𝒩v, and cloud AR. a, Left: 
sample image after rotating for tΩ = 474 ms. Middle: blurred reference image 
(σ = 2.1 μm). Right: residuals with markers (black circles) indicating the identified 
vortices. b, The detected vortex number 𝒩𝒩v (top) and the AR of the cloud 
(bottom) after the rotation time tΩ. Data points and error bars show the mean and 
standard error from about ten experimental runs. Solid lines indicate the 
averaged results from ten corresponding simulations with different initial noise 
for parameters as = 110a0, (ω⊥, ωz) = 2π × [50, 130] Hz, N = 10,000 and Ω = 0.75ω⊥; 
the shaded area gives its standard error.
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Our observations bear a remarkable resemblance to the simulations; 
Fig. 2 (top) shows the in situ column densities. Taking a fixed atom num-
ber of N = 8,000, but otherwise repeating the experimental sequence, 
we observe many similar features. In the first 100 ms, the system elon-
gates, consistent with Fig. 1, and a spiral density pattern appears before 
the instability, forming two arms that are filled with vortices close to the 
central density. Next, turbulent dynamics ensue as the density surface 
goes unstable and vortices emerge in the central high-density region. 
For this scattering length and atom number, the relaxation timescale 
to a stable vortex lattice is longer than the experimentally available 
(see Extended Data Fig. 3 for more images from this dataset). Note 
that at angles θ deeper into the plane, more atoms align head-to-tail 
in the loose radial confinement direction. Thus, when performing the 
rotation procedure, we find that the BEC is resilient to instability on 
the timescales of the experiment.

The observed evolution of the system under constant rotation 
shows some concurrence between the appearance of vortices in the 
absorption images and the formation of a round density pattern in the 
radial plane with AR ≈ 1 (Fig. 2). Note that the drop in AR observed in 
Fig. 1 is concurrent with the creation of vortices, but they reside in the 
low-density regions at this time, and we do not see them. To study this 
dynamical evolution in more detail, we adopt an analysis protocol for 
both the experiment and theory that allows us to quantitatively track 
the evolution of the average number of vortices, 𝒩𝒩v (Methods). The 
result is shown in Fig. 3a. In brief, for each single image (Fig. 3a, left), 
we create a blurred reference image by applying a 2D Gaussian filter56,57. 
We then calculate the difference between each single image (Fig. 3a, 
left) and the corresponding reference (Fig. 3a, middle) to obtain the 
residual image (Fig. 3a, right), from which we count 𝒩𝒩v by finding local 
minima below a certain threshold.

For the experimental density profiles, which are affected by both 
the limited resolution of the imaging system and the weak contrast in 

the low-density zones (halo) where the vortices initially nest, we expect 
𝒩𝒩v to be underestimated relative to the true value and the number 
expected by theory. However, to carry out a quantitative comparison 
with the simulations, we apply a blurring filter and add noise to the 
latter that mimics the actual resolution in the experiment 
(Methods).

Figure 3b shows both the evolution of 𝒩𝒩v and cloud AR as a function 
of rotation time, tΩ. Solid lines are the results from the eGPE simulations 
without any adjustable parameters. For tΩ < 200 ms, 𝒩𝒩v is below 1, where 
vortices, if present, are at the edge of the cloud. For longer times, 𝒩𝒩v 
increases and saturates to an average value of about three and a maxi-
mum of six vortices (see Fig. 3a for an example of five vortices). The 
observed saturation might be due to the decreased visibility and to the 
atom-loss-induced shrinking of the BEC size, which is not accounted 
for in the theory. We also compare the course of the average vortex 
number with the AR of the cloud. After initial large oscillations, due to 
the sudden jump in rotation frequency, the AR declines towards ~1  
(ref. 53). This happens as the vortex number simultaneously increases.

One fascinating prediction with vortices in a strongly dipolar gas 
under the influence of a rotating magnetic field relates to the struc-
ture of the resulting vortex lattice. Due to magnetostriction and the 
anisotropic vortex cores, the resulting vortex configuration is also 
anisotropic, producing a stripe phase in the strongly dipolar regime29,30, 
instead of the usual triangular lattice in non-dipolar BECs6. The ground 
state stripe lattice solution for our parameters is shown in Fig. 4a, 
with a cloud AR = 1.08. In the vortex stripe phase, vertical planes of 
high-density regions, parallel to the magnetic field, alternate with 
low-density ones, which host rows of vertical vortex filaments. Such 
a configuration promotes head-to-tail dipolar attraction within the 
high-density ridges, and this acts to lower the energy. It should be noted 
that these states are distinct from the oscillating vortex sheets states, 
which appear after squeezing a triangular vortex lattice58.
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Fig. 4 | Stripe nature of vortices in a dipolar BEC. a, Left: ground-state stripe 
lattice solution for our experimental parameters as = 109a0, trap frequencies 
(ω⊥, ωz) = 2π × [50, 130] Hz, N = 10,000 and Ω = 0.75ω⊥. Middle: corresponding 
residual image, found by subtracting the ground state from the blurred image, 
with circles showing the detected vortices. Right: Fourier transform of the 
residual image. b, Left: single experimental image after 500 ms of continuous 
rotation at Ω = 0.75ω⊥. Middle: the corresponding residual image. Right: Fourier 
transform of the residual images, averaged over 49 runs, with example shots 

shown to the right. c, Left: simulation result for the dynamic experimental 
procedure in b. Middle and right: residuals (middle) and FT analysis (right) 
(115 temporal images) as in b. d, The same as b for 121 runs, but we rotate for 
an additional 100 ms and then spiral the magnetic field to θ = 0° over a further 
100 ms before imaging. e, Simulation result for procedure in d. All simulation 
images are rotated to have the same magnetic-field direction as the experiment, 
as indicated by the white arrow in a and by the circles in d.
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To explore this prediction, we perform two new surveys. First, 
we slightly reduce the magnetic-field value, reducing the scattering 
length to as ≈ 109a0 and hence making the system relatively more 
dipolar. We magnetostir the BEC at a constant rotation frequency 
Ω = 0.75ω⊥ for 500 ms, but during TOF, we stop the magnetic-field 
rotation and keep it in place at θ = 35°. The stripe structure is revealed 
in Fig. 4b (left) for a single experimental run and is clearly visible in 
the residual image (Fig. 4b, middle) where the vortices align along 
three stripes. The spatial structure of the residual image can be 
assessed through the absolute value of 2D Fourier transform (FT). 
After taking the FT of each residual image, we then average the result 
(Fig. 4b, right), finding a clear peak at the wave number k of the 
inter-stripe spacing. This shows that the stripe spatial structure 
survives the averaging, implying that the majority of images show 
stripes with the same spacing, and they also have the same orienta-
tion as set by the magnetic field, as evidenced by the example images 
shown in the right of Fig. 4. Note that these observations do not 
rely on our ability to resolve individual vortices, as the stripes are 
an ensemble effect of many aligned vortices. In fact, by comparing 
with the numerical simulations of the dynamical procedure (Fig. 4c), 
we expect there are more vortices than detected here that fill in the 
stripes, forging out this structure. In general, our simulations show 
that the stripes appear faster when the scattering length is lower and 
when the atom number is larger. In the long time limit of the scenario 
presented in Fig. 2, we expect the stationary solution to also be the 
stripe state, but this is not observable on our timescales.

Remarkably, the stripe structure washes out when we subse-
quently tilt the magnetic-field orientation to θ = 0° (parallel to the 
trap symmetry axis), as shown in Fig. 4d (left). Here, after 600 ms of 
magnetostirring, we add another step in which we spiral up the mag-
netic field to θ = 0° (with Ω fixed) over 100 ms, before imaging. Under 
these conditions, all vortex properties are again isotropic within the 
plane. The non-equilibrium positioning of the vortices is arbitrary, 
and if we average the FT of the residuals directly, we observe a homo-
geneous ring in the average FT (Fig. 4d, right). Also, this behaviour is 
confirmed by the simulations, as shown in Fig. 4e. The vortices survive 
long after the magnetostirring has stopped (not shown), due to their 
topological protection.

By exploiting magnetostirring—a novel, robust method of gen-
erating angular momentum—we have observed quantized vortices 
in a dipolar quantum gas and the appearance of the vortex stripe 
configuration. Future works will focus on investigations of the indi-
vidual vortex shape and behaviour, such as the anisotropic nature 
of the vortex cores for in-plane magnetic fields30–33, the interplay 
between the vortex and roton excitations30–34 and exotic vortex pat-
terns such as square lattices29, and investigations into anisotropic tur-
bulence59. This work also opens the door to studying more complex 
matter under rotation, such as dipolar droplets60–62 and supersolid 
states41–43,51. Such proposals will be challenging due to the intricate 
density patterns63; however, such observations would provide con-
clusive evidence of superfluidity in supersolids. Rotating the mag-
netic field at frequencies far larger than the radial trap frequencies, 
but smaller than the Larmor frequency, has been observed to tune 
the sign and magnitude of the dipole–dipole interaction64—a method 
also employed in nuclear magnetic resonance spectroscopy— 
but there remain open questions on the stability of this proce-
dure65,66, which if rectifiable would unlock new research directions64. 
Other vortex generation methods, such as thermally activated 
pairs in quasi-two dimensions to assess the Berezinskii–Kosterlitz– 
Thouless transition and stochastically generated vortex tangles 
through temperature quenches to assess the Kibble–Zurek mecha-
nism, remain unexplored in dipolar gases29. The technique intro-
duced here is also applicable to a wide range of systems governed 
by long-range interactions through the manipulation of magnetic 
or electric fields.
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Methods
Experimental procedure
We prepare an ultracold gas of 162Dy atoms in an ODT. Three 1,064 nm 
laser beams, overlapping at their foci, form the ODT. The experimental 
procedure to BEC is similar to the one followed in our previous work51, 
but the magnetic-field unit vector, B̂, is tilted by an angle of θ = 35° with 
respect to the z-axis during the whole sequence. After preparation, the 
sample contains about 2 × 104 condensed atoms. The corresponding 
trap frequencies are typically (ω⊥, ωz) = 2π × [50.8(2), 140(1)] Hz. For 
all our measurements, the deviation of the trap AR in the x–y plane 
ARtrap = ωy/ωx from 1 is always smaller than 0.6%. We evaporate the atoms 
at B = 5.423(5) G and jump to the final magnetic-field value during the 
last evaporation ramp. After the preparation of the BEC, the magnetic 
field is rotated as described in the next section. We use standard absorp-
tion imaging to record the atomic distribution. We probe the vortices 
using the vertical imaging taken along the axis of rotation (z), for which 
the dark spots within the condensate correspond to the cores of indi-
vidual vortices. The vertical images are taken with a short TOF of 3 ms 
and a pulse duration of 3–4 μs. For the data in Figs. 1–3, we let the 
magnetic-field spinning during TOF, whereas for Fig. 4, we use a static 
field orientation.

Control of the magnetic field
Calibration. Three pairs of coils—each oriented along a primary axis in 
the laboratory frame—enable the creation of a homogeneous field with 
arbitrary orientations. The absolute magnetic-field value B of each pair 
of coils is independently calibrated using radio frequency (RF) spec-
troscopy. The RF drives transitions to excited Zeeman states, leading to 
a resonant dip in the atom number. The long-term stability—measured 
via the peak position of the RF resonance over the course of several 
days—is on the order of ΔB = ±1 mG, while shot-to-shot fluctuations, 
measured via the width of the RF resonance for a single calibration 
set, is ΔB = ±5 mG.

Rotation. We drive the rotation of the magnetic field by sinusoidally 
modulating the magnetic-field value components Bx and By with a 
phase difference of 90° between them. As we want to keep the absolute 
magnetic-field value B constant during rotation, we measure it for 
various values of the azimuthal angle ϕ and fixed θ = 35° by perform-
ing Feshbach loss spectroscopy around 5.1 G. We find an average shift 
of B of about 10 mG from the θ = 0° case, which we take into account. 
We also find small deviations as a function of ϕ of ΔB < 20 mG, which 
might appear due to slightly non-orthogonal alignment of the magnetic 
fields. We did not correct these deviations for the sake of simplicity.

Scattering length
The scattering length in 162Dy is currently not known with large accu-
racy67–70. To estimate the scattering length in the small magnetic-field 
range around B = 5.3 G, relevant to this work, we use the well-known 
relation as = abg∏i[1 − ΔBi/(B − B0,i)] (ref. 71), where B0,i and ΔBi are the 
centre position and the width of the i-th feature of the Feshbach loss 
measurement reported in ref. 70, respectively. The value of the back-
ground scattering length, abg, is empirically fixed by measuring the 
magnetic-field value at which the supersolid transition occurs and com-
paring it with the corresponding critical as predicted from simulations. 
Such an approach leads to as = 111(9)a0 at B = 5.333 G. Extended Data 
Fig. 1 shows the resulting scattering lengths for the relevant magnetic 
fields. Although such an approach gives very good agreement between 
theory and experiments, future works on a precise determination of as, 
similar to the one achieved with erbium72, would be desirable.

Magnetostirring
Tilting the magnetic-field vector B away from the symmetry axis of 
our cylindrical trap leads to an ellipsoidal deformation of the cloud45 
and therefore to a breaking of the cylindrical symmetry. This allows 

for the transfer of angular momentum to the sample by rotating the 
magnetic field (magnetostirring). In all our measurements, we use a 
B tilted with respect to the z axis by 35° and a constant value B. That 
value is B = 5.333(5) G for the surveys in Figs. 1–3 and B = 5.323(5 )G for 
Fig. 4. For these parameters, the deformed magnetostricted AR of the 
cloud is AR − 1 = 0.03. For all our measurements, the measured trap 
ARtrap − 1 < 0.006 is much smaller than the deformation due to magne-
tostriction. Additionally, we have confirmed with simulations that even 
with trap asymmetries of up to 10%, for example, (ωx, ωy) = (55, 50) Hz, 
this procedure can still generate vortices in a lattice configuration.

At the scattering lengths considered in this work, 35° is an optimal 
choice to see the vortices within ~500 ms of rotation and anisotropic 
enough to observe the stripe phase. From the simulations, we find that 
tilt angles smaller than 35° increase the timescale to vortex nucleation. 
Similarly, tilting the angle further into the plane increases the number 
of atoms that are aligned head to tail, making the dipolar interaction 
dominantly attractive. This attractive force holds the condensate 
together during the rotation, also increasing the time to vortex nuclea-
tion. From the experimental side, increasing the tilt angle reduces the 
contrast of the absorption imaging, since the magnetic field is not 
parallel to the imaging axis. As the TOF is only 3 ms, we do not rotate 
up the magnetic field before imaging to avoid undesired effects, such 
as losing the anisotropy given by θ ≠ 0°.

Adiabatic frequency ramp. We employ different magnetic-field rota-
tion sequences for the different datasets. For the dataset of Fig. 1c, the 
rotation frequency of the magnetic field is linearly increased to differ-
ent final values at a speed of Ω̇ = 2𝜋𝜋 × 50Hz s−1  and for a duration of 
tΩ̇ = 0−1 s. The ramp time is much longer than the period of the rotation 
Ω−1 for higher rotation frequencies Ω ≳ Ωc, and, therefore, the ramp is 
adiabatic for the regimes considered, until the onset of dynamical 
instabilities. After the ramp, the magnetic-field direction is rotated at 
the target rotation frequency Ω for one final period (as shown in  
Fig. 1b). We sample ten different final magnetic-field angles during this 
last rotation, measuring the corresponding AR and averaging the result 
to remove any potential biases due to latent trap anisotropies. Each 
data point is then obtained with eight to ten experimental runs.

Constant rotation frequency. For the dataset of Figs. 2, 3 and 4b, we 
directly start to rotate at the final rotation frequency Ω without any 
acceleration phase. The magnetic field is then rotated for a variable 
time tΩ, after which the atoms are released from the trap and a vertical 
image is taken.

Spiral up magnetic field. For the dataset of Fig. 4d, we employ a similar 
sequence as described above. However, after constantly rotating the 
magnetic field at Ω = 0.75ω⊥, the magnetic field is spiralled up in 100 ms 
to θ = 0° by linearly reducing θ while continuing rotating. Afterwards, 
the atoms are released from the trap and a vertical image is taken.

Theoretical model
We employ an eGP formalism to model our experimental set-up. In this 
scheme, the inter-particle interactions are described by the two-body 
pseudo-potential

U(r) = 4 ℏ2as
m δ(r) + 3ℏ2add

m
1 − 3(ê(t) ⋅ r)2

r3
, (1)

with δ(r) being the Kronecker delta function and r = (x, y, z). The first 
term describes the short-range interactions governed by the s-wave 
scattering length as, with Planck’s constant ℏ and particle mass m. 
The second term represents the anisotropic and long-range dipole–
dipole interactions, characterized by dipole length add = μ0μ2

mm/12 ℏ2, 
with magnetic moment μm and vacuum permeability μ0. We always 
consider 162Dy, such that add = 129.2a0, where a0 is the Bohr radius. 
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The dipoles are polarized uniformly along a time-dependent axis, 
given by

ê(t) = (sinθ(t) cosϕ(t), sinθ(t) sinϕ(t), cosθ(t)) (2)

with time-dependent polarization angle θ(t) and ϕ(t) = ∫t
0 dt′Ω(t′), for 

rotation frequency protocol Ω(t).
Beyond-mean-field effects are treated through the inclusion of a 

Lee–Huang–Yang correction term73

γQF =
128ℏ2
3m √ a5

s Re {𝒬𝒬5(ϵdd)} , (3)

with 𝒬𝒬5(ϵdd) = ∫1
0 du (1 − ϵdd + 3u2ϵdd)

5/2
 being the auxiliary function, and 

the relative dipole strength is given by ϵdd = add/as. Finally, the full eGPE 
then reads54,74–76

iℏ ∂Ψ(x,t)
∂t

= [−ℏ2∇2

2m
+ 1

2
m (ω2

xx2 + ω2
yy2 + ω2

z z2)

+ ∫d3x′ U(x − x′)|Ψ (x′, t)|2 + γQF|Ψ (x, t)|3]Ψ (x, t),
(4)

where ωx,y,z are the harmonic trap frequencies. The wave function Ψ is 
normalized to the total atom number N = ∫d3x∣Ψ∣2. The stationary solu-
tion for Fig. 4a is found through the imaginary time procedure in the 
rotating frame, introducing the usual angular momentum operator 
Ω ̂Lz into equation (4). The initial state Ψ(x, 0) of the real-time simula-
tions is always obtained by adding non-interacting noise to the ground 
state Ψ0(x). Given the single-particle eigenstates ϕn and the complex 
Gaussian random variables αn sampled with ⟨|αn|2⟩ = (en/kBT − 1)−1 + 1

2
  

for a temperature T = 20 nK and Boltzmann’s constant kB, the initial 
state can be described as Ψ (x,0) = Ψ0 (x) + ∑

n

′αnϕn (x), where the sum is 

restricted only to the modes with ϵn ≤ 2kBT (ref. 77). Throughout, the 
density images are presented in situ, with a scaling factor to account 
for the 3 ms TOF for the experimental images.

To obtain the average residual FT images for Fig. 4c,e, we first 
Fourier transform 115 frames from the simulation between 700 ms and 
1.1 s in the rotating frame before averaging the result.

Atom number
Extended Data Fig. 2 shows the condensed atom number Nc for the 
measurement with an adiabatic ramp of the magnetic-field rotational 
velocity (Ω̇ = 2𝜋𝜋 × 50Hz s−1 ), corresponding to the data of Fig. 1c. 
Three-body losses are negligible in the low-density BEC phase, with 
losses probably coming from imperfections in the rotation procedure 
and heating. To extract the atom number, we use the horizontal imaging 
with 26 ms of TOF. About 3 ms before flashing the imaging resonant 
light to the atoms, we rotate the magnetic field in the imaging plane 
and perform standard absorption imaging. From the absorption 
images, we extract Nc from a bimodal fit up to 700 ms. At later times, 
the system undergoes a dynamic instability (see discussion in the main 
text), and the density profile deviates from a simple bimodal distribu-
tion. During the observation time, we see a slight decrease of Nc, and 
for our theory simulations, we use a constant atom number of 
Nc = 15,000. Note that in all following datasets, in which we abruptly 
accelerate the magnetic-field rotation to the desired final velocity, we 
observe a faster decay, and our simulations are performed with either 
Nc = 8,000 or Nc = 10,000.

Vortex detection
Vortex detection algorithm. Since vortices appear as dark holes in the 
density profile of a BEC, which would otherwise have a smooth profile, 
our approach to extract the number of vortices is to look at deviations 
between the image and an unmodulated reference image. To extract 
the vortex number from the raw images, we proceed as follows.

First, we prepare the image nimg, the reference image nref and the 
residual image nres. The image is normalized such that the maximum 
density max(nimg) = 1. We create the reference image by blurring the 
image via applying a 2D Gaussian filter with σ = 5 pixel, corresponding 
to about 2.1 μm. This blurring smoothens any structure on the length-
scale of the filter width; therefore, any holes in the density profile 
wash out. We then normalize the atom number of the reference to be 
the same as from the image Nref = ∫∫nref ≐ Nimg = ∫∫nimg. The residual 
image is calculated as the difference between the image and the refer-
ence nres = nimg − nref . We additionally mask the region where the 
density of the reference is below a certain threshold (nres = 0, where 
nref ≤ 0.1).

Second, we identify local minima in the residual image  
and determine whether they are connected to vortices. For this, we 
create a list of local minima (xmin, ymin), defined by the condition that 
the pixel density nres(xmin, ymin) is lower than of all surrounding pixels. 
Then we remove minima with density values above zero 
nres(xmin, ymin) ≥ 0 or which are within one pixel distance of the mask 
border. Now we determine a local contrast for each minimum by cal-
culating the difference between its central density value and the  
mean of the density values ± 2 pixel values away from it 
ncon(xmin, ymin) = nres(xmin, ymin) −mean(nres(xmin ± 2px, ymin ± 2px)) , and 
remove minima above a certain threshold ncon > −0.11. As a last step, we 
check the distance d between all remaining minima to avoid double 
counting of minima too close to each other. In case d is below the 
threshold d < 5 pixel, the minimum with the higher residual density 
value nres is discarded.

Preparation of theory density profiles. For the direct comparison of 
the vortex number shown in Fig. 3b, we apply additional steps to the 
density profiles obtained from theory. First, we reduce the resolution 
by a 2 × 2 binning to make the pixel size of the theory density profiles 
ntheo
img  essentially the same as for the experimental images (sizes are 

within 5%). After normalizing to max(ntheo
img ) = 1, we apply Gaussian white 

noise with zero mean and a variance of 0.01 to each pixel, recreating 
the noise pattern from empty regions of experimental images. Then 
we blur the image using a 2D Gaussian filter with σ = 1 pixel (~0.42 μm); 
this recreates the same resolution condition as our experimental 
set-up. The resulting density profile is taken as the input image for the 
vortex detection algorithm described above.

Benchmarking the vortex detection algorithm. As the vortex posi-
tions for the simulation images are known a priori due to the avail-
able phase map, we can derive the fidelity of the vortex detection 
algorithm for simulation data. For the theory data shown in Fig. 3b in 
the time frame between 600 and 700 ms, the average detected vortex 
number in the simulated density profiles (applying the preparation 
scheme described above) is about 9, while the real number of vortices 
present in the same area of the image is about 33 in average. This mis-
match is explained by the conservative choice of the thresholds for 
vortex detection together with the added noise, which results in only 
counting clear density dips as vortices, throwing out many vortices 
in the low-density region. This conservative choice of thresholds on 
the other hand leads to a very high fidelity of >97%, where we define 
the fidelity as the percentage of detected vortices that correspond to 
actual present vortices in the data. For raw simulation data (without 
resolution reduction, added noise and blurring), the vortex detec-
tion algorithm would detect up to 80% of the vortices present with 
a fidelity of >95%.

Note that for the visualization of the vortex positions for Fig. 4, 
we slightly increased the local threshold ncon > −0.08 and decreased 
the minimum distance between vortices d < 3 pixel, which increases 
the overall number of vortices detected. For the density distributions 
obtained from theory, we additionally omit the resolution reduction, 
addition of noise and blurring steps.
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Data availability
Data pertaining to this work can be found at https://doi.org/10.5281/
zenodo.7019859.

Code availability
The codes that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Calculated B-to-as conversion for 162Dy. Scattering length as a function of the magnetic-field value with the background scattering length 
abg = 129(9) a0. We find as = 111(9) a0 at B = 5.333 G.
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Extended Data Fig. 2 | Condensed atom number Nc during magnetostirring (Fig. 1c). Condensed atom number as a function of spin-up time tΩ̇ for the same 
sequence as in Fig. 1c. The condensed atom number is extracted by fitting a two-dimensional bimodal distribution of Thomas-Fermi and Gaussian function to the 
horizontal density distributions.
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Extended Data Fig. 3 | Repeatability of the vortex generation protocol. Each 
row shows the simulated image (a, b, c) and the corresponding vertical TOF 
images from independent experimental runs (ai, bi, ci) for a different rotation 
time: ta = 127 ms, tb = 207 ms, and tc = 741 ms. The rotation frequency is Ω = 0.74ω⊥ 

with the trap frequencies being ωt = 2π × [50.7(1), 50.8(1), 129(1)] Hz. The 
magnetic field value is B = 5.333(5)G. For the simulation the scattering length 
used is 112 a0, the trap frequencies are (50, 50, 150) Hz, the condensed atom 
number is N = 8000 and the rotation frequency is 0.75ω⊥.
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