Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The flow from simulation to reality

Fluid simulations today are remarkably realistic. In this Comment I discuss some of the most striking results from the past 20 years of computer graphics research that made this happen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two optimizations for fluid simulations.

a, reproduced from ref. 5, ACM; b, courtesy of Chris Wojtan and Eitan Grinspun.

Fig. 2: Advanced fluid simulation effects.

a, The FLIP Fluids Addon Development Team; b, reproduced from ref. 8, ACM.

References

  1. Harlow, F. & Welch, J. E. Phys. Fluids 8, 2182–2189 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  2. Foster, N. & Metaxas, D. Graph. Models Im. Proc. 58, 471–483 (1996).

    Article  Google Scholar 

  3. Stam, J. Stable fluids. In SIGGRAPH ‘99: Proc. 26th Conference on Computer Graphics and Interactive Techniques 121–128 (ACM, 1999).

  4. Berger, M. J. & Colella, P. J. Comput. Phys. 82, 64–84 (1984).

    Article  ADS  Google Scholar 

  5. Ando, R., Thürey, N. & Wojtan, C. ACM Trans. Graph. 32, 103 (2013).

    Article  Google Scholar 

  6. Da, F., Hahn, D., Batty, C., Wojtan, C. & Grinspun, E. ACM Trans. Graph. 35, 78 (2016).

    Article  Google Scholar 

  7. Ihmsen, M., Akinci, N., Akinci, G. & Teschner, M. Visual Comput. 28, 669–677 (2012).

    Article  Google Scholar 

  8. Ruan, L. et al. ACM Trans. Graph. 40, 120 (2021).

    Article  Google Scholar 

  9. Lyu, C., Li, W., Desbrun, M. & Liu, X. ACM Trans. Graph. 40, 201 (2021).

    Article  ADS  Google Scholar 

  10. Huang, L., Hädrich, T. & Michels, D. L. ACM Trans. Graph. 38, 93 (2019).

    Google Scholar 

  11. Fei, Y., Maia, H. T., Batty, C., Zheng, C. & Grinspun, E. ACM Trans. Graph. 36, 56 (2017).

    Article  Google Scholar 

  12. Takahashi, T. & Lin, M. C. ACM Trans. Graph. 38, 237 (2019).

    Article  Google Scholar 

  13. Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. Proc. 37th International Conference on Machine Learning 119, 8459–8468 (2020).

    Google Scholar 

Download references

Acknowledgements

I thank C. Batty who graciously provided constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Zsolnai-Fehér.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zsolnai-Fehér, K. The flow from simulation to reality. Nat. Phys. 18, 1260–1261 (2022). https://doi.org/10.1038/s41567-022-01788-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01788-5

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics