Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Search for quantum gravity using astrophysical neutrino flavour with IceCube

Abstract

Along their long propagation from production to detection, neutrinos undergo flavour conversions that convert their types or flavours1,2. High-energy astrophysical neutrinos propagate unperturbed over a billion light years in vacuum3 and are sensitive to small effects caused by new physics. Effects of quantum gravity4 are expected to appear at the Planck energy scale. Such a high-energy universe would have existed only immediately after the Big Bang and is inaccessible by human technologies. On the other hand, quantum gravity effects may exist in our low-energy vacuum5,6,7,8, but are suppressed by inverse powers of the Planck energy. Measuring the coupling of particles to such small effects is difficult via kinematic observables, but could be observable through flavour conversions. Here we report a search with the IceCube Neutrino Observatory, using astrophysical neutrino flavours9,10 to search for new space–time structure. We did not find any evidence of anomalous flavour conversion in the IceCube astrophysical neutrino flavour data. We apply the most stringent limits of any known technologies, down to 10−42 GeV−2 with Bayes factor greater than 10 on the dimension-six operators that parameterize the space–time defects. We thus unambiguously reach the parameter space of quantum-gravity-motivated physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of this analysis.
Fig. 2: Astrophysical neutrino flavour triangle, including illustrations of new physics effects and data contours.
Fig. 3: Limits on the dimension-six new physics operator.

Similar content being viewed by others

Data availability

The data events and simulation used in this analysis are described in ref. 9 and files are available from ref. 39.

Code availability

Much of the analysis code is IceCube proprietary and exists as part of the IceCube simulation and production framework. IceCube open-source code can be found at https://github.com/icecube. Additional information is available from analysis@icecube.wisc.edu upon request.

References

  1. Fukuda, Y. et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998).

    Article  ADS  Google Scholar 

  2. Ahmad, Q. R. et al. Measurement of the rate of νe + d → p + p + e interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001).

    Article  ADS  Google Scholar 

  3. Aartsen, M. G. et al. Neutrino emission from the direction of the blazar TXS 0506 + 056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

    Article  ADS  Google Scholar 

  4. Hawking, S. W. The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395–415 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Kostelecky, V. A. & Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683–685 (1989).

    Article  ADS  Google Scholar 

  6. Amelino-Camelia, G., Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  7. Pospelov, M. & Shang, Y. On Lorentz violation in Horava-Lifshitz type theories. Phys. Rev. D 85, 105001 (2012).

    Article  ADS  Google Scholar 

  8. Addazi, A. Quantum gravity phenomenology at the dawn of the multi-messenger era—a review. Prog. Part. Nucl. Phys. 125, 103948 (2022).

    Article  Google Scholar 

  9. Abbasi, R. et al. The IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Phys. Rev. D 104, 022002 (2021).

    Article  ADS  Google Scholar 

  10. Abbasi, R. et al. [IceCube] Measurement of astrophysical tau neutrinos in IceCube’s high-energy starting events. Preprint at https://arxiv.org/abs/2011.03561 (2020).

  11. Diaz, J. S., Kostelecky, A. & Mewes, M. Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D 89, 043005 (2014).

    Article  ADS  Google Scholar 

  12. Ellis, J., Mavromatos, N. E., Sakharov, A. S. & Sarkisyan-Grinbaum, E. K. Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506 + 056. Phys. Lett. B 789, 352–355 (2019).

    Article  ADS  Google Scholar 

  13. Amelino-Camelia, G., D’Amico, G., Rosati, G. & Loret, N. In-vacuo-dispersion features for GRB neutrinos and photons. Nat. Astron. 1, 0139 (2017).

    Article  ADS  Google Scholar 

  14. Huang, Y. & Ma, B. Q. Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 1, 62 (2018).

    Article  Google Scholar 

  15. Aartsen, M. G. et al. Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14, 961–966 (2018).

    Article  Google Scholar 

  16. Kostelecky, V. A. & Russell, N. Data tables for Lorentz and CPT violation. Preprint at https://arxiv.org/abs/0801.0287v15 (2022).

  17. Esteban, I., Gonzalez-Garcia, M. C., Maltoni, M., Schwetz, T. & Zhou, A. The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP 09, 178 (2020).

    Article  ADS  Google Scholar 

  18. Chalmers, M. Interview: Steven Weinberg. CERN Courier 57(9), 31–35 (November 2017).

  19. Kostelecky, A. & Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012).

    Article  ADS  Google Scholar 

  20. Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).

    Article  Google Scholar 

  21. Honda, M., Kajita, T., Kasahara, K., Midorikawa, S. & Sanuki, T. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Phys. Rev. D 75, 043006 (2007).

    Article  ADS  Google Scholar 

  22. Bhattacharya, A., Enberg, R., Reno, M. H., Sarcevic, I. & Stasto, A. Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. JHEP 06, 110 (2015).

    Article  ADS  Google Scholar 

  23. Heck, D., Knapp, J., Capdevielle, J. N., Schatz, G. & Thouw, T. CORSIKA: a Monte Carlo code to simulate extensive air showers. Report number FZKA-6019 (1998); https://publikationen.bibliothek.kit.edu/270043064

  24. Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Interiors 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  25. Cooper-Sarkar, A., Mertsch, P. & Sarkar, S. The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP 08, 042 (2011).

    Article  ADS  MATH  Google Scholar 

  26. Abbasi, R. et al. LeptonInjector and LeptonWeighter: a neutrino event generator and weighter for neutrino observatories. Comput. Phys. Commun. 266, 108018 (2021).

    Article  Google Scholar 

  27. Song, N., Li, S. W., Argüelles, C. A., Bustamante, M. & Vincent, A. C. The future of high-energy astrophysical neutrino flavor measurements. J. Cosmol. Astropart. Phys. 04, 054 (2021).

    Article  ADS  Google Scholar 

  28. Hümmer, S., Maltoni, M., Winter, W. & Yaguna, C. Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot. Astropart. Phys. 34, 205–224 (2010).

    Article  ADS  Google Scholar 

  29. Rasmussen, R. W., Lechner, L., Ackermann, M., Kowalski, M. & Winter, W. Astrophysical neutrinos flavored with Beyond the Standard Model physics. Phys. Rev. D 96, 083018 (2017).

    Article  ADS  Google Scholar 

  30. Bustamante, M. & Agarwalla, S. K. Universe’s worth of electrons to probe long-range interactions of high-energy astrophysical neutrinos. Phys. Rev. Lett. 122, 061103 (2019).

    Article  ADS  Google Scholar 

  31. Klop, N. & Ando, S. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos. Phys. Rev. D 97, 063006 (2018).

    Article  ADS  Google Scholar 

  32. Farzan, Y. & Palomares-Ruiz, S. Flavor of cosmic neutrinos preserved by ultralight dark matter. Phys. Rev. D 99, 051702 (2019).

    Article  ADS  Google Scholar 

  33. Fiorillo, D. F. G., Mangano, G., Morisi, S. & Pisanti, O. IceCube constraints on violation of equivalence principle. J. Cosmol. Astropart. Phys. 04, 079 (2021).

    Article  ADS  Google Scholar 

  34. Argüelles, C. A., Katori, T. & Salvado, J. New physics in astrophysical neutrino flavor. Phys. Rev. Lett. 115, 161303 (2015).

    Article  ADS  Google Scholar 

  35. Mandalia, S. Searching for Quantum Gravity with Neutrinos, Optical Module Beam Test at Fermilab and Hadronization Model Studies for IceCube. PhD thesis, Queen Mary Univ. of London (2020); https://qmro.qmul.ac.uk/xmlui/handle/123456789/69453

  36. Farrag, K. From Infinite to Zero Redshift, Searches for Beyond the Standard Neutrino Model Physics Using Radio Telescopes and Astrophysical Neutrinos in IceCube. PhD thesis, Queen Mary Univ. of London (2022).

  37. Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article  ADS  Google Scholar 

  38. Pordes, R. et al. The Open Science Grid. J. Phys. Conf. Ser. 78, 012057 (2007).

    Article  Google Scholar 

  39. IceCube Collaboration. HESE 7.5 year data release (2021); https://doi.org/10.21234/4EQJ-BB17

Download references

Acknowledgements

We acknowledge support from the following agencies and institutions: USA—US National Science Foundation–Office of Polar Programs, US National Science Foundation–Physics Division, US National Science Foundation–EPSCoR, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin–Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), Frontera computing project at the Texas Advanced Computing Center, US Department of Energy–National Energy Research Scientific Computing Center, Particle Astrophysics Research Computing Center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle Physics Computational Facility at Marquette University; Belgium—Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany—Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY) and High Performance Computing Cluster of the RWTH Aachen; Sweden—Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC) and Knut and Alice Wallenberg Foundation; Australia—Australian Research Council; Canada—Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid and Compute Canada; Denmark—Villum Fonden and Carlsberg Foundation; New Zealand—Marsden Fund; Japan—Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea—National Research Foundation of Korea (NRF); Switzerland—Swiss National Science Foundation (SNSF); United Kingdom—Department of Physics, University of Oxford, the Royal Society and the Science and Technology Facilities Council (STFC).

Author information

Authors and Affiliations

Consortia

Contributions

The IceCube Collaboration acknowledges the significant contributions to this manuscript from C. Argüelles, K. Farrag and T. Katori. The IceCube Collaboration designed, constructed and now operates the IceCube Neutrino Observatory. Data processing and calibration, Monte Carlo simulations of the detector and of theoretical models, and data analyses were performed by a large number of collaboration members, who also discussed and approved the scientific results presented here.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Giulia Gubitosi, Sergio Navas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Example posterior distribution over the 14 nuisance parameters.

The plot is for \({{{\rm{Re}}}}({\mathring{c}}_{\tau\tau}^{(6)})=1{0}^{-44}\,Ge{V}^{-2}\) with source combination (0: 1: 0)S. Blue contours show two dimensional distribution slices, with one-dimensional projections above for each parameter. Three vertical lines indicate the lower quartile (25%), median (50%) and upper quartile (75%) for each parameter. Parameters are introduced in Ref. 9.

Extended Data Fig. 2 Example of the analysis Bayes factor as a function of one of the constrained parameters.

Horizontal lines show different hypothesis rejection strength levels according to Jeffreys’ scale. Here, we set the limit on \({{{\rm{Re}}}}({\mathring{c}}_{\tau\tau}^{(6)})\) with an assumed source flavour ratio (0: 1: 0)S. A substantial limit is obtained when the Bayes factor is greater than 10.0, and strong limits when the Bayes factor is greater than 31.6. Error bars indicate the error on the evidence computation via nested sampling.

Extended Data Fig. 3 Limits on the dimension-three new physics operator.

The hatched region is the limit obtained from the atmospheric neutrino data analysis on \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(3)})\)15. Limits determined by Bayes factors > 10 (dashed lines) and > 31.6 (solid lines) are presented as a function of the assumed astrophysical neutrino flavour ratio at the production source. The leftmost scenario is νμ dominant (0: 1: 0)S and the rightmost is νe dominant (1: 0: 0)S. The preferred scenario corresponds to (1/3: 2/3: 0)S (dashed vertical line). Limits on \({{{\rm{Re}}}}({\mathring{a}}_{ee}^{(3)})\) on (orange), \({{{\rm{Re}}}}({\mathring{a}}_{e\mu }^{(3)})\) (red), \({{{\rm{Re}}}}({\mathring{a}}_{e\tau }^{(3)})\) (green), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \mu }^{(3)})\) (yellow), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(3)})\) (purple), and \({{{\rm{Re}}}}({\mathring{a}}_{\tau \tau }^{(3)})\) (blue) are shown.

Extended Data Fig. 4 Limits on the dimension-four new physics operator.

The hatched region is the limit obtained from the atmospheric neutrino data analysis on \({{{\rm{Re}}}}({\mathring{c}}_{\mu \tau }^{(4)})\)15. Limits determined by Bayes factors > 10 (dashed lines) and > 31.6 (solid lines) are presented as a function of the assumed astrophysical neutrino flavour ratio at the production source. The leftmost scenario is νμ dominant (0: 1: 0)S and the rightmost is νe dominant (1: 0: 0)S. The preferred scenario corresponds to (1/3: 2/3: 0)S (dashed vertical line). Limits on \({{{\rm{Re}}}}({\mathring{c}}_{ee}^{(4)})\) on (orange), \({{{\rm{Re}}}}({\mathring{c}}_{e\mu }^{(4)})\) (red), \({{{\rm{Re}}}}({\mathring{c}}_{e\tau }^{(4)})\) (green), \({{{\rm{Re}}}}({\mathring{c}}_{\mu \mu }^{(4)})\) (yellow), \({{{\rm{Re}}}}({\mathring{c}}_{\mu \tau }^{(4)})\) (purple), and \({{{\rm{Re}}}}({\mathring{c}}_{\tau \tau }^{(4)})\) (blue) are shown.

Extended Data Fig. 5 Limits on the dimension-five new physics operator.

The hatched region is the limit obtained from the atmospheric neutrino data analysis on \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(5)})\)15. Limits determined by Bayes factors > 10 (dashed lines) and > 31.6 (solid lines) are presented as a function of the assumed astrophysical neutrino flavour ratio at the production source. The leftmost scenario is νμ dominant (0: 1: 0)S and the rightmost is νe dominant (1: 0: 0)S. The preferred scenario corresponds to (1/3: 2/3: 0)S (dashed vertical line). Limits on \({{{\rm{Re}}}}({\mathring{a}}_{ee}^{(5)})\) on (orange), \({{{\rm{Re}}}}({\mathring{a}}_{e\mu }^{(5)})\) (red), \({{{\rm{Re}}}}({\mathring{a}}_{e\tau }^{(5)})\) (green), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \mu }^{(5)})\) (yellow), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(5)})\) (purple), and \({{{\rm{Re}}}}({\mathring{a}}_{\tau \tau }^{(5)})\) (blue) are shown.

Extended Data Fig. 6 Limits on the dimension-seven new physics operator.

The hatched region is the limit obtained from the atmospheric neutrino data analysis on \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(7)})\)15. Limits determined by Bayes factors > 10 (dashed lines) and > 31.6 (solid lines) are presented as a function of the assumed astrophysical neutrino flavour ratio at the production source. The leftmost scenario is νμ dominant (0: 1: 0)S and the rightmost is νe dominant (1: 0: 0)S. The preferred scenario corresponds to (1/3: 2/3: 0)S (dashed vertical line). Limits on \({{{\rm{Re}}}}({\mathring{a}}_{ee}^{(7)})\) on (orange), \({{{\rm{Re}}}}({\mathring{a}}_{e\mu }^{(7)})\) (red), \({{{\rm{Re}}}}({\mathring{a}}_{e\tau }^{(7)})\) (green), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \mu }^{(7)})\) (yellow), \({{{\rm{Re}}}}({\mathring{a}}_{\mu \tau }^{(7)})\) (purple), and \({{{\rm{Re}}}}({\mathring{a}}_{\tau \tau }^{(7)})\) (blue) are shown.

Extended Data Fig. 7 Limits on the dimension-eight new physics operator.

The hatched region is the limit obtained from the atmospheric neutrino data analysis on \({{{\rm{Re}}}}({\mathring{c}}_{\mu \tau }^{(8)})\)15. Limits determined by Bayes factors > 10 (dashed lines) and > 31.6 (solid lines) are presented as a function of the assumed astrophysical neutrino flavour ratio at the production source. The leftmost scenario is νμ dominant (0: 1: 0)S and the rightmost is νe dominant (1: 0: 0)S. The preferred scenario corresponds to (1/3: 2/3: 0)S (dashed vertical line). Limits on \({{{\rm{Re}}}}({\mathring{c}}_{ee}^{(8)})\) on (orange), \({{{\rm{Re}}}}({\mathring{c}}_{e\mu }^{(8)})\) (red), \({{{\rm{Re}}}}({\mathring{c}}_{e\tau }^{(8)})\) (green), \({{{\rm{Re}}}}({\mathring{c}}_{\mu \mu }^{(8)})\) (yellow), \({{{\rm{Re}}}}({\mathring{c}}_{\mu \tau }^{(8)})\) (purple), and \({{{\rm{Re}}}}({\mathring{c}}_{\tau \tau }^{(8)})\) (blue) are shown.

Extended Data Table 1 Limits on new physics operators extracted from this analysis.

These limits on new physics operators are derived from Bayes factor > 10.0 (Bayes factor > 31.6) which corresponds to 1 in 10.0 (31.6) likelihood ratio for a uniform prior. They are for characteristic source flavour ratios, (1: 0: 0)S, (1/3: 2/3: 0)S, and (0: 1: 0)S. We list only operators where limits are set.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The IceCube Collaboration. Search for quantum gravity using astrophysical neutrino flavour with IceCube. Nat. Phys. 18, 1287–1292 (2022). https://doi.org/10.1038/s41567-022-01762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01762-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing