Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological semimetal driven by strong correlations and crystalline symmetry


Electron correlations amplify quantum fluctuations and, as such, are recognized as the origin of many quantum phases. However, whether strong correlations can lead to gapless topological states is an outstanding question, in part because many of the ideas in topological condensed-matter physics rely on the analysis of an effectively non-interacting band structure. Therefore, a framework that allows the identification of strongly correlated topological materials is needed. Here we suggest a general approach in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this materials design principle by exploring Kondo lattice models and materials whose space-group symmetries promote different kinds of electronic degeneracies. This approach allows us to identify Weyl–Kondo nodal-line semimetals with nodes pinned to the Fermi energy, demonstrating that it can be applied to discover strongly correlated topological semimetals. We identify three heavy-fermion compounds as material candidates, provide direct experimental evidence for our prediction in Ce2Au3In5 and discuss how our approach may lead to many more. Our findings illustrate the potential of this materials design principle to guide the search for new topological metals in a broad range of strongly correlated systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials design principle and SG symmetry.
Fig. 2: Electronic structure in the absence of Kondo effect.
Fig. 3: Kondo-driven composite fermions of 3D-stacked square nets with broken inversion symmetry.
Fig. 4: Design of new materials for correlation-driven topological semimetal phases and the first synthesized material.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The computer codes that were used to generate the data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  2. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Article  Google Scholar 

  3. Cano, J. & Bradlyn, B. Band representations and topological quantum chemistry. Annu. Rev. Condens. Matter Phys. 12, 225–246 (2021).

    Article  ADS  Google Scholar 

  4. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  5. Cano, J. et al. Building blocks of topological quantum chemistry: elementary band representations. Phys. Rev. B 97, 035139 (2018).

    Article  ADS  Google Scholar 

  6. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

    Article  ADS  Google Scholar 

  7. Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. Phys. Rev. Lett. 117, 096404 (2016).

    Article  ADS  Google Scholar 

  8. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  9. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  10. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article  ADS  Google Scholar 

  11. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article  ADS  Google Scholar 

  12. Maciejko, J. & Fiete, G. A. Fractionalized topological insulators. Nat. Phys. 11, 385–388 (2015).

    Article  Google Scholar 

  13. Rachel, S. & Le Hur, K. Topological insulators and Mott physics from the Hubbard interaction. Phys. Rev. B 82, 075106 (2010).

    Article  ADS  Google Scholar 

  14. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  15. Schaffer, R., Lee, E. K.-H., Yang, B.-J. & Kim, Y. B. Recent progress on correlated electron systems with strong spin–orbit coupling. Rep. Prog. Phys. 79, 094504 (2016).

    Article  ADS  Google Scholar 

  16. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  17. Lai, H.-H., Grefe, S. E., Paschen, S. & Si, Q. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115, 93–97 (2018).

    Article  ADS  Google Scholar 

  18. Grefe, S. E., Lai, H.-H., Paschen, S. & Si, Q. Weyl-Kondo semimetals in nonsymmorphic systems. Phys. Rev. B 101, 075138 (2020).

    Article  ADS  Google Scholar 

  19. Grefe, S. E., Lai, H.-H., Paschen, S. & Si, Q. Extreme topological tunability of Weyl-Kondo semimetal to Zeeman coupling. Preprint at (2020).

  20. Dzsaber, S. et al. Kondo insulator to semimetal transformation tuned by spin-orbit coupling. Phys. Rev. Lett. 118, 246601 (2017).

    Article  ADS  Google Scholar 

  21. Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).

    Article  Google Scholar 

  22. Dzsaber, S. et al. Controlling electronic topology in a strongly correlated electron system. Preprint at (2019).

  23. Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).

    Article  ADS  Google Scholar 

  24. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article  ADS  Google Scholar 

  25. Yao, M. et al. Switchable Weyl nodes in topological kagome ferromagnet Fe3Sn2. Preprint at (2018).

  26. Morimoto, T. & Nagaosa, N. Weyl Mott insulator. Sci. Rep. 6, 19853 (2016).

    Article  ADS  Google Scholar 

  27. Wagner, N., Ciuchi, S., Toschi, A., Trauzettel, B. & Sangiovanni, G. Resistivity exponents in 3D Dirac semimetals from electron-electron interaction. Phys. Rev. Lett. 126, 206601 (2021).

    Article  ADS  Google Scholar 

  28. Lourenço, J. A. S., Eneias, R. L. & Pereira, R. G. Kondo effect in a \({\mathcal{PT}}\)-symmetric non-Hermitian Hamiltonian. Phys. Rev. B 98, 085126 (2018).

  29. Ahamed, S., Moessner, R. & Erten, O. Why rare-earth ferromagnets are so rare: insights from the p-wave Kondo model. Phys. Rev. B 98, 054420 (2018).

    Article  ADS  Google Scholar 

  30. Jang, S. et al. Direct visualization of coexisting channels of interaction in CeSb. Sci. Adv. 5, eaat7158 (2019).

    Article  ADS  Google Scholar 

  31. Chiu, C.-K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phys. Rev. B 90, 205136 (2014).

    Article  ADS  Google Scholar 

  32. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

    Article  ADS  Google Scholar 

  33. Bian, G. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 93, 121113 (2016).

    Article  ADS  Google Scholar 

  34. Chan, Y.-H., Chiu, C.-K., Chou, M. Y. & Schnyder, A. P. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B 93, 205132 (2016).

    Article  ADS  Google Scholar 

  35. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

    Article  ADS  Google Scholar 

  36. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    Article  ADS  Google Scholar 

  37. Schoop, L. M. et al. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Sci. Adv. 4, eaar2317 (2018).

    Article  ADS  Google Scholar 

  38. Muechler, L. et al. Modular arithmetic with nodal lines: drumhead surface states in ZrSiTe. Phys. Rev. X 10, 011026 (2020).

    Google Scholar 

  39. Klemenz, S., Schoop, L. & Cano, J. Systematic study of stacked square nets: from Dirac fermions to material realizations. Phys. Rev. B 101, 165121 (2020).

    Article  ADS  Google Scholar 

  40. Nica, E. M., Yu, R. & Si, Q. Glide reflection symmetry, Brillouin zone folding, and superconducting pairing for the P4/nmm space group. Phys. Rev. B 92, 174520 (2015).

    Article  ADS  Google Scholar 

  41. Li, C. et al. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys. Rev. Lett. 120, 146602 (2018).

    Article  ADS  Google Scholar 

  42. Yang, H., Moessner, R. & Lim, L.-K. Quantum oscillations in nodal line systems. Phys. Rev. B 97, 165118 (2018).

    Article  ADS  Google Scholar 

  43. Kwan, Y. H. et al. Quantum oscillations probe the Fermi surface topology of the nodal-line semimetal CaAgAs. Phys. Rev. Res. 2, 012055 (2020).

    Article  Google Scholar 

  44. Stuart, B. A. et al. Quasiparticle interference observation of the topologically nontrivial drumhead surface state in ZrSiTe. Phys. Rev. B 105, L121111 (2022).

    Article  ADS  Google Scholar 

  45. Biderang, M., Leonhardt, A., Raghuvanshi, N., Schnyder, A. P. & Akbari, A. Drumhead surface states and their signatures in quasiparticle scattering interference. Phys. Rev. B 98, 075115 (2018).

    Article  ADS  Google Scholar 

  46. Kirchner, S. et al. Colloquium: heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).

    Article  ADS  Google Scholar 

  47. Anand, V. K., Adroja, D. T., Bhattacharyya, A., Klemke, B. & Lake, B. Kondo lattice heavy fermion behavior in CeRh2Ga2. J. Phys. Condens. Matter 29, 135601 (2017).

    Article  ADS  Google Scholar 

  48. Gignoux, D., Schmitt, D., Zerguine, M., Ayache, C. & Bonjour, E. Magnetic properties of a new Kondo lattice compound: CePt2Si2. Phys. Lett. A 117, 145–149 (1986).

    Article  ADS  Google Scholar 

  49. Nakamoto, G. et al. Crystal growth and characterization of the Kondo semimetal CeNiSn. J. Phys. Soc. Jpn 64, 4834–4840 (1995).

    Article  ADS  Google Scholar 

  50. Galadzhun, Y. V., Hoffmann, R.-D., Pöttgen, R. & Adam, M. Complex three-dimensional [Au3In5] polyanions in Ln2Au3In5 (Ln = Ce, Pr, Nd, Sm). J. Solid State Chem. 148, 425–432 (1999).

    Article  ADS  Google Scholar 

  51. Aeppli, G. & Fisk, Z. Kondo insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).

    Google Scholar 

  52. Nikolić, P. Two-dimensional heavy fermions on the strongly correlated boundaries of Kondo topological insulators. Phys. Rev. B 90, 235107 (2014).

    Article  ADS  Google Scholar 

  53. Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides. Phys. Rev. B 96, 125110 (2017).

    Article  ADS  Google Scholar 

  54. Komijani, Y. & Kotliar, G. Analytical slave-spin mean-field approach to orbital selective Mott insulators. Phys. Rev. B 96, 125111 (2017).

    Article  ADS  Google Scholar 

  55. Huang, J. et al. Correlation-driven electronic reconstruction in FeTe1–xSex. Commun. Phys. 5, 29 (2022).

    Article  Google Scholar 

  56. Song, Z.-D. & Bernevig, B. A. MATBG as topological heavy fermion: I. Exact mapping and correlated insulators. Preprint at (2021).

  57. Hu, H. et al. Gapless electronic topology without free-electron counterpart. Preprint at (2021).

  58. Wu, W. et al. Hourglass Weyl loops in two dimensions: theory and material realization in monolayer GaTeI family. Phys. Rev. Mater. 3, 054203 (2019).

    Article  Google Scholar 

Download references


The work at Rice has been supported by the Air Force Office of Scientific Research under grant no. FA9550-21-1-0356 (C.S. and Q.S.), the National Science Foundation (NSF) under grant no. DMR-2220603 (L.C.) and the Robert A. Welch Foundation grant no. C-1411 (H.H.). The majority of the computational calculations have been performed on the Shared University Grid at Rice funded by NSF under grant EIA-0216467, a partnership between Rice University, Sun Microsystems and Sigma Solutions; the Big-Data Private-Cloud Research Cyberinfrastructure MRI award funded by NSF under grant no. CNS-1338099; and the Extreme Science and Engineering Discovery Environment (XSEDE) by NSF under grant no. DMR170109. M.G.V. acknowledges support from the Spanish Ministry of Science and Innovation grant no. PID2019-109905GB-C21 and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) GA 3314/1-1–FOR 5249 (QUAST). The work at Los Alamos was carried out under the auspices of the US Department of Energy (DOE) National Nuclear Security Administration under contract no. 89233218CNA000001, and was supported by LANL LDRD program. J.C. acknowledges support from the NSF under grant no. DMR-1942447 and support from the Flatiron Institute, a division of the Simons Foundation. The work in Vienna was supported by the Austrian Science Fund (project nos. 29279-N27 and I 5868-N–FOR 5249—QUAST). S.G., S.P., J.C. and Q.S. acknowledge the hospitality of the Aspen Center for Physics, which is supported by NSF grant no. PHY-1607611.

Author information

Authors and Affiliations



Q.S., J.C. and S.P. conceived the research. L.C., C.S., H.H., S.E.G., J.C. and Q.S. carried out the theoretical model studies. A.P. and S.P. identified the candidate materials for the proposed correlated topological semimetals. L.F. and X.Y. synthesized the material and G.E. performed the specific-heat measurements. M.G.V. performed the DFT calculations. L.C., C.S., H.H., J.C. and Q.S. wrote the manuscript, with inputs from all the authors.

Corresponding authors

Correspondence to Silke Paschen, Jennifer Cano or Qimiao Si.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Johann Kroha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Discussion.

Source data

Source Data Fig. 2

Numerical source data.

Source Data Fig. 3

Numerical source data.

Source Data Fig. 4

Experimental source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Setty, C., Hu, H. et al. Topological semimetal driven by strong correlations and crystalline symmetry. Nat. Phys. 18, 1341–1346 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing