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Interactions shape the collective behaviour of many-particle 
quantum systems, leading to rich phase diagrams where conven-
tional and novel phases can be induced by a controlled variation 

of external stimuli. The most direct example is perhaps the Mott 
insulator, where the large repulsion among particles leads to an 
insulating state despite the non-interacting system being a metal or 
a superfluid1. In solid-state physics, the interest in Mott insulators 
is reinforced by the observation that the proximity to a Mott transi-
tion is a horn of plenty where a variety of spectacular phases can be 
observed, high-temperature superconductivity2,3 being only the tip 
of the iceberg4.

In recent years, it has become clear that the standard SU(2) 
Fermi–Hubbard model is only one specific example, as many inter-
esting materials require a description in terms of ‘multicomponent’ 
Hubbard models, for example when the conduction electrons have 
an additional orbital degree of freedom. These systems are not 
merely more complicated but rather host new phenomena, chal-
lenging the standard paradigm of Mott localization5. Indeed, when 
the symmetry between orbitals is broken, by some field or internal 
coupling, electrons in specific orbitals (or some combinations of 
them) can be Mott-localized while others remain itinerant, leading 
to surprising ‘orbital-selective Mott insulators’6.

Orbital-selective Mott physics has become a central concept for 
the description of a new class of high-Tc superconductors based on 
iron7, as it can describe the anomalies of the metallic state8–10 and the 
orbital character of superconductivity11 in those systems. However, 
a clean observation of selective Mott transitions is intrinsically hard 
in solid-state systems because of the limited experimental control 
over the microscopic parameters and the orbital degree of freedom. 
The paradigm of selective Mott physics is itself far from being fully 
explored and has the potential to become a powerful framework 
to understand a variety of phenomena, from superconductivity to 
topological properties, in multicomponent quantum materials.

In this work, we take a broader perspective and treat orbital- 
selective Mott physics as an example of the general concept of 
flavour-selective Mott localization12, which can be realized in a vari-
ety of multi-flavour systems, where the flavour can be the spin, the 
orbital or any other quantum number. We realize a minimal instance 
of this phenomenon by means of an atomic quantum simulator 
based on the optical manipulation of nuclear-spin mixtures of ultra-
cold two-electron 173Yb atoms. This platform allows the realization 
of multicomponent systems with global SU(N) interaction symme-
try (where N is the number of components)13,14, as in recent works 
reporting the realization of SU(N) quantum wires15, SU(N) Mott 
insulators16,17 and, more recently, SU(N) quantum magnetism18. Here, 
we introduce an approach to break the symmetry of SU(3) Fermi–
Hubbard systems in a controlled way, which allows us to go beyond 
the investigations in the solid state and to observe directly the two 
key signatures of selective Mott physics12: an overall enhancement 
of Mott localization and the onset of flavour-selective correlations.

The experiment is performed with three-component ultracold  
173Yb Fermi gases with total atom number up to N = 4 × 104 and initial  
temperature T ≃ 0.2TF (where TF is the Fermi temperature for the  
single-component gas). The atoms are then trapped in a cubic three- 
dimensional (3D) optical lattice (lattice constant d = λ/2 = 380 nm), 
which realizes the multi-flavour Hubbard Hamiltonian

Ĥ = −t
∑

⟨i,j⟩,α

(

ĉ†αiĉαj + h.c.
)

+ U
∑

i,α,β ̸=α
n̂αin̂βi + V̂T

+
Ω

2
∑

i

(

ĉ†1iĉ2i + h.c.
)

(1)

where α, β ∈ {1, 2, 3} indicate the fermionic flavours (correspond-
ing to nuclear spin states m = +5/2, +1/2 and −5/2, respectively), 
ĉ†αi is the destruction operator for a fermion of flavour α in site i 
(h. c. denotes the Hermitian conjugate operator), n̂αi = ĉ†αiĉαi is the 
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corresponding number operator, t is the tunnelling energy between 
nearest-neighbouring sites 〈i, j〉, U is the on-site repulsion energy 
between two atoms of different flavours and V̂T = κ

∑

i,αR
2
i n̂αi 

describes the effects of a slowly varying harmonic trapping poten-
tial (where Ri is the distance of site i from the trap centre and κ 
describes the strength of the trap). This last term determines the 
density in the lattice. In the non-interacting case (U = 0) the aver-
age filling at T = 0 and Ω = 0 can be calculated as ~1.8 atoms per 
site for the mean atom number of N = 2 × 104 considered in the 
experiments discussed below, while in the strongly interacting limit 
(t = 0 and Ω = 0) it reduces to 1 atom per site (corresponding to the 
formation of Mott domains) (Supplementary Information). In the 
absence of the fourth term of equation (1), Ĥ  has an intrinsic global 
SU(3) symmetry, which is ensured by the lack of variation of the 
atom–atom interactions with the spin state and by the realization of 
spin-independent optical potentials, that is, that U, t and κ do not 
depend on α. This symmetry is explicitly broken by the fourth term, 
which describes a coherent on-site coupling between flavours |1⟩ 
and |2⟩. This coupling is provided by a two-photon Raman process 
with a Rabi frequency of Ω/h (Supplementary Information) (where 
h is the Planck constant). At the single-particle level, this coupling 
lifts the degeneracy between the flavours, creating two dressed com-
binations |±⟩ = (|1⟩ ± |2⟩) /

√

2, energy-shifted from |3⟩ by ±Ω/2, 
as sketched in Fig. 1c.

We use an adiabatic preparation sequence to produce an  
equilibrium state of the atomic mixture in the optical lattice, with 
equal state populations N1 = N2 = N3 = N/3 and in the presence  
of the coherent coupling Ω between states |1⟩ and |2⟩ (Supple
mentary Information). To characterize the degree of localization 
of the particles in the lattice, we measure the number of atoms Nd 
in doubly occupied sites (called ‘doublons’ in the following) with 
photoassociation spectroscopy, as in previous experiments that 

demonstrated the onset of Mott localization for ultracold fermions 
(refs. 16,19 and Supplementary Information). Figure 2a reports typical 
measurements of Nd as a function of the total atom number N. In a 
harmonically trapped system, the rate of change of Nd with respect 
to N provides information on the core compressibility19,20. A vanish-
ing value of Nd over an extended range of N signals the presence of 
an incompressible state with one atom per site in the centre of the 
trap (since adding particles does not lead to a proportional increase 
of doublons), while the critical N above which Nd then departs from 
zero can be connected to the magnitude of the energy gap protect-
ing the localized phase. Figure 2a shows two datasets for U = 2.6D 
(where D = 6t is the tunnelling energy times the lattice coordina-
tion number) and two different Rabi couplings Ω = 0 and Ω = 1.6D, 
respectively. A comparison between the two datasets clearly shows 
that the Rabi coupling Ω results in an enhanced suppression  
of doublons, enlarging the region of N where the incompressible 
state forms.

In the following, we take the doublon fraction fd = 〈Nd/N〉, aver-
aged over the N interval marked by the grey region in Fig. 2a as 
an indicator of the degree of Mott localization of the system. The 
measured values of fd are shown as a function of U and Ω in Fig. 2b,  
clearly revealing the cooperative effect of Rabi coupling and repul-
sive interactions driving the system towards a Mott localized  
state. The same data are plotted with error bars in Fig. 2c,d along 
two different line cuts of the diagram in Fig. 2b. Figure 2c shows the 
effect of an increasing U in the transition towards an SU(3) Mott 
insulator for Ω = 0, while Fig. 2d shows a similar localization effect 
induced by Ω at a fixed interaction strength U = 2.6D.

We now show a comparison of the experimental results with dif-
ferent theoretical analysis of the model in equation (1). Figure 3a 
shows a zero-temperature phase diagram obtained from dynamical 
mean-field theory (DMFT)21 for the homogeneous system (VT = 0) 
with a uniform 1/3 filling (one atom per site) and an equal number 
of particles for each flavour. The phase diagram clearly has the same 
shape as the experimental one, showing that the Hubbard U and the 
coupling Ω cooperate in driving the system from a metallic phase 
to a more localized state. Between the standard metal and the Mott 
phase, we find a region where the degree of correlations (as mea-
sured by the quasiparticle weight) is strongly selective, the coupled 
flavours being much more localized than the uncoupled one. It is 
evident that both selective and global Mott localization occur at a 
smaller U if Ω is included.

To connect this effect to the experimentally measured signal,  
Fig. 3b shows the doublon fraction fd obtained from the homogeneous 
DMFT results after a local density approximation (LDA) analysis, 
to take into account the effect of the harmonic trapping in VT. The 
reduction of fd with increasing Ω is in agreement with the experi-
mental observations reported in Fig. 2. The lack of a quantitative 
matching with Fig. 2d can be attributed to imperfections in the ini-
tial state preparation and to the finite temperature of the experiment, 
resulting in an average entropy per particle of S/N ≈ 2.5kB (where kB 
is the Boltzmann constant), which is known20 to produce an effect 
on the double occupancies in a trapped system already at Ω = 0. A 
comprehensive analysis of finite-temperature effects is presented in 
the Supplementary Information, showing that thermal fluctuations 
do explain the discrepancy between experiments and theory, with-
out spoiling the properties of the expected zero-temperature phases. 
There we also show experimental evidence that the entropy of the sys-
tem is not appreciably affected by the presence of the Raman coupling, 
ruling out unwanted heating as a possible cause for the reduction of fd.

Finally, Fig. 3c shows the result of a zero-temperature DMRG 
calculation of fd for a harmonically trapped one-dimensional (1D) 
system (Supplementary Information). Although quantitative agree-
ment with the experimental data should not be sought (because 
of the different dimensionality and the finite temperature of the 
experimental realization), the overall behaviour, that is, a reduction 
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Fig. 1 | Sketch of the physical system. a, We consider a system of 
repulsively SU(3)-interacting fermions in a lattice. The global symmetry 
is broken by a coherent Rabi driving Ω between two internal states. b, In 
the absence of coupling, the system experiences a phase transition from 
an SU(3) metal to a Mott insulator as the hopping is reduced. c, The Rabi 
driving lifts the degeneracy between the states and, in a dressed basis 
picture, causes them to acquire different energies. The competition with 
the hopping can drive a transition from a metal to an insulator already in 
the non-interacting case. The energy band diagrams refer to the simplified 
case of a homogeneous system at a constant Fermi energy.
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of the doublons for increasing U and Ω, is correctly captured and 
agrees also with DMFT. This also indicates that the phenomena we 
are exploring are generic and qualitatively independent from the 
dimensionality.

In addition to the enhancement of the Mott localization, the 
DMFT phase diagram of Fig. 3a shows that Ω is expected to result 
in a flavour-dependent localization of the many-body system. The 
flavour-selective behaviour can be detected experimentally by 
resolving the spin character of the doublons, that is, by counting 
how many atoms form doublons in each of the three pairs |12⟩, |23⟩ 
and |31⟩ by means of state-selective photoassociation at a high mag-
netic field (Supplementary Information). Figure 4 shows the quan-
tity γ(12) = Nd(12)/Nd, where Nd(12) is the number of atoms forming 
doublons in the |12⟩ channel, as a function of Ω and fixed U = 2.6D. 
The measured value at Ω = 0 agrees with the expectation for a sys-
tem with SU(3) symmetry, for which γ(12) = 1/3. As Ω is increased 
and the SU(3) symmetry is broken, γ(12) diminishes, eventually  
approaching zero for Ω ≈ D. The doublons acquire a strongly 
flavour-selective behaviour.

This suppression of |12⟩ doublons is triggered by the polarization 
effect in the rotated |±⟩ basis, which can be understood, at a qualita-
tive level, already from the simplified, non-interacting case sketched 
in Fig. 1c. While |23⟩ and |31⟩ doublons can be formed by two fer-
mions in the lowest single-particle states |+⟩ and |3⟩, |12⟩ doublons 
can be formed only if the two fermions occupy states |+⟩ and |−⟩, 
therefore with an additional energy cost of Ω/2. Interactions then 
increase this effect12, leading to strong flavour-selective results even 
for small values of Ω.

The crosses in Fig. 4 are the result of a DMFT calculation in 
which the flavour populations are kept equal and the harmonic 
trapping VT has been taken into account in an LDA approach. The 
results of this numerical calculation are in good agreement with 
the experimental findings, with a larger degree of selectivity for 
the theoretical calculation. We argue that better agreement could 
be sought by including finite-temperature effects in the calculation. 
Indeed, we expect the state-selective behaviour to be reduced by the 
thermal occupation of higher-energy states, leading to an effective 
reduction of the polarization in the |+⟩, |−⟩ basis.
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Note that the experimental observation of a finite number of |12⟩ 
doublons at small but finite Ω is an indication of the validity of the 
protocol used for the preparation of the atomic state, which is dif-
ferent for Ω = 0 and Ω > 0 (Supplementary Information). Note also 
that, despite the polarization in the dressed |+⟩, |−⟩ basis discussed 
above, we have verified that the populations of the bare states |1⟩, 
|2⟩ and |3⟩ remain always equal under all the experimental condi-
tions we have considered. This is indeed an important aspect of 
our experiment. If the populations of the bare states were not fixed 
(and in particular if N3 was left free to adapt), the dressed states 
would be populated according to the scheme in Fig. 1c, leading to 
N1 = N2 > N3, which favours flavour-selective physics already in the 
non-interacting system. The experimental state preparation pro-
cedure counteracts the trivial differentiation between flavours by 
forcing an even occupation. Therefore, we conclude that the flavour 
selectivity that we observed is essentially due to quantum correla-
tions induced by interactions.

In the theoretical DMFT calculations, the equal population con-
straint is enforced by including an external field h (Supplementary 
Information) that favours the occupation of |3⟩ in such a way as to 
match the experimental condition N1 + N2 + N3 = N/3. Comparing 
with ref. 12, where the populations were left free, we observe that 
the quantum correlations leading to the selective regime survive 
the inclusion of the field h. In general terms, single-particle effects 
trigger flavour selectivity, but the inclusion of interactions strongly 
enhances the differentiation, turning a minor modulation of kinetic 
energy into a quantitative phenomenon which can also lead to a 
selective Mott transition22. This is a very general framework, under-
lying many investigations of multicomponent models.

Exploiting an idealized quantum simulator, we have obtained 
clear-cut evidence for correlation-induced flavour-selective phys-
ics, where the SU(N) symmetry-breaking coupling Ω is only the 

trigger of a flavour-selective phenomenon which is fundamentally 
driven by correlation effects. Our realization of multicomponent 
Hubbard physics with coherent internal couplings opens new paths 
for the quantum simulation of new classes of materials ranging from 
high-temperature superconductors to interacting topological insu-
lators as described by the Bernevig–Hughes–Zhang model23. Once 
the coupling is realized with a non-zero momentum transfer (that 
is, non-collinear Raman beams), a full range of possibilities will 
emerge, including the study of magnetic crystals24, fractional quan-
tum Hall states25 and the effect of interactions of topological phase 
transitions26 and on the associated edge states27.
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