Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

20 years of network community detection

A fundamental technical challenge in the analysis of network data is the automated discovery of communities — groups of nodes that are strongly connected or that share similar features or roles. In this Comment we review progress in the field over the past 20 years.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Community structure of a social network.


  1. Newman, M. E. J. Networks (Oxford Univ. Press, 2018).

  2. Fortunato, S. Phys. Rep. 486, 75–174 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  3. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications (Cambridge Univ. Press, 1994).

  4. Girvan, M. & Newman, M. E. J. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  5. Newman, M. E. J. & Girvan, M. Phys. Rev. E 69, 026113 (2004).

    ADS  Article  Google Scholar 

  6. Newman, M. E. J. Phys. Rev. E 69, 066133 (2004).

    ADS  Article  Google Scholar 

  7. Guimera, R., Sales-Pardo, M. & Amaral, L. A. N. Phys. Rev. E 70, 025101(R) (2004).

    ADS  Article  Google Scholar 

  8. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  9. Holland, P. W., Laskey, K. B. & Leinhardt, S. Social Networks 5, 109–137 (1983).

    MathSciNet  Article  Google Scholar 

  10. Peixoto, T. P. Phys. Rev. Lett. 110, 148701 (2013).

    ADS  Article  Google Scholar 

  11. Rosvall, M. & Bergstrom, C. T. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    ADS  Article  Google Scholar 

  12. Fortunato, S. & Barthelemy, M. Proc. Natl Acad. Sci. USA 104, 36–41 (2007).

    ADS  Article  Google Scholar 

  13. Reichardt, J. & Bornholdt, S. Phys. Rev. E 74, 016110 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  14. Peixoto, T. P. Phys. Rev. X 4, 011047 (2014).

    Google Scholar 

  15. Andersen, R., Chung, F. & Lang, K. in 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) 475–486 (IEEE, 2006).

  16. Lancichinetti, A., Radicchi, F., Ramasco, J. J. & Fortunato, S. PLoS ONE 6, e18961 (2011).

    ADS  Article  Google Scholar 

  17. Danon, L., Diaz-Guilera, A., Duch, J. & Arenas, A. J. Stat. Mech. 2005, P09008 (2005).

    Article  Google Scholar 

  18. Albert, R. & Barabási, A.-L. Rev. Mod. Phys. 74, 47–97 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  19. Karrer, B. & Newman, M. E. J. Phys. Rev. E 83, 016107 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  20. Lancichinetti, A., Fortunato, S. & Radicchi, F. Phys. Rev. E 78, 046110 (2008).

    ADS  Article  Google Scholar 

  21. Fred, A. L. N. & Jain, A. K. in Proc. 2003 IEEE Computer Soc. Conf. Computer Vision Pattern Recognition 128–136 (IEEE, 2003).

  22. Lancichinetti, A. & Fortunato, S. Phys. Rev. E 80, 056117 (2009).

    ADS  Article  Google Scholar 

  23. Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. Phys. Rev. E 84, 066106 (2011).

    ADS  Article  Google Scholar 

  24. Massoulié, L. in Proc. 46th Annual ACM Symposium Theory of Computing 694–703 (ACM, 2014).

  25. Mossel, E., Neeman, J. & Sly, A. Probab. Theory Relat. Fields 162, 431–461 (2015).

    Article  Google Scholar 

  26. Hric, D., Darst, R. K. & Fortunato, S. Phys. Rev. E 90, 062805 (2014).

    ADS  Article  Google Scholar 

  27. Newman, M. E. J. & Clauset, A. Nat. Commun. 7, 11863 (2016).

    ADS  Article  Google Scholar 

  28. Peel, L., Larremore, D. B. & Clauset, A. Sci. Adv. 3, e1602548 (2017).

    ADS  Article  Google Scholar 

  29. Clauset, A., Moore, C. & Newman, M. E. J. Nature 453, 98–101 (2008).

    ADS  Article  Google Scholar 

  30. Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. Nature 435, 814–818 (2005).

    ADS  Article  Google Scholar 

  31. Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. J. Mach. Learn. Res. 9, 1981–2014 (2008).

    Google Scholar 

  32. Csermely, P., London, A., Wu, L.-Y. & Uzzi, B. J. Complex Netw. 1, 93–123 (2013).

    Article  Google Scholar 

  33. Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. SIAM J. Appl. Math. 74, 167–190 (2014).

    MathSciNet  Article  Google Scholar 

  34. Goyal, P. & Ferrara, E. Knowledge-Based Syst. 151, 78–94 (2018).

    Article  Google Scholar 

  35. Hamilton, W., Ying, Z. & Leskovec, J. in Proc. 31st International Conference on Neural Information Processing Systems (NIPS’17) 1025–1035 (MIT Press, 2017).

  36. Hoff, P. D., Raftery, A. E. & Handcock, M. S. J. Am. Stat. Assoc. 97, 1090–1098 (2002).

    Article  Google Scholar 

  37. Newman, M. E. J. & Peixoto, T. P. Phys. Rev. Lett. 115, 088701 (2015).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Santo Fortunato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fortunato, S., Newman, M.E.J. 20 years of network community detection. Nat. Phys. 18, 848–850 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing