Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of the Hanbury Brown–Twiss effect with ultracold molecules


Measuring the statistical correlations of individual quantum objects provides an excellent way to study complex quantum systems. Ultracold molecules represent a powerful platform for quantum simulation1 and quantum computation2 due to their rich and controllable internal degrees of freedom. However, the detection of correlations between single molecules in an ultracold gas has yet to be demonstrated. Here we observe the Hanbury Brown–Twiss effect—the emergence of bunching correlations of indistinguishable particles collected by separate detectors—in a gas of bosonic 23Na87Rb Feshbach molecules, enabled by the realization of a molecular quantum gas microscope. We detect the characteristic bunching correlations in the density fluctuations of a two-dimensional molecular gas released from and subsequently recaptured in an optical lattice. The quantum gas microscope allows us to extract the positions of individual molecules with single-site resolution. As a result, we obtain a two-molecule interference pattern with high visibility. Although these measured correlations purely arise from the quantum statistics of the molecules, the demonstrated imaging capabilities open the way for site-resolved studies of interacting molecular gases in optical lattices.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: HBT interference of heteronuclear bosonic molecules.
Fig. 2: Microscopy of molecules in an optical lattice.
Fig. 3: Molecular binding energy versus magnetic field B.
Fig. 4: Observation of the HBT effect with molecules.

Data availability

Source data can be found in the Harvard Dataverse47. All other supporting data are available from the corresponding author upon reasonable request.


  1. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  2. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    ADS  Google Scholar 

  3. Brown, R. H. & Twiss, R. Q. A new type of interferometer for use in radio astronomy. Philos. Mag. 45, 663–682 (1954).

    ADS  Google Scholar 

  4. Brown, R. H. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    ADS  Google Scholar 

  5. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963).

    ADS  MathSciNet  Google Scholar 

  6. Baym, G. The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions. Acta Phys. Pol. B 29, 1839–1884 (1998).

    ADS  Google Scholar 

  7. Henny, M. et al. The fermionic Hanbury Brown and Twiss experiment. Science 284, 296–298 (1999).

    ADS  Google Scholar 

  8. Oliver, W. D., Kim, J., Liu, R. C. & Yamamoto, Y. Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299–301 (1999).

    ADS  Google Scholar 

  9. Iannuzzi, M., Orecchini, A., Sacchetti, F., Facchi, P. & Pascazio, S. Direct experimental evidence of free-fermion antibunching. Phys. Rev. Lett. 96, 080402 (2006).

    ADS  Google Scholar 

  10. Cohen, J. D. et al. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525 (2015).

    ADS  Google Scholar 

  11. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    ADS  Google Scholar 

  12. Yasuda, M. & Shimizu, F. Observation of two-atom correlation of an ultracold neon atomic beam. Phys. Rev. Lett. 77, 3090 (1996).

    ADS  Google Scholar 

  13. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Google Scholar 

  14. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    ADS  Google Scholar 

  15. Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    ADS  Google Scholar 

  16. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

    ADS  Google Scholar 

  17. Hodgman, S., Dall, R., Manning, A., Baldwin, K. & Truscott, A. Direct measurement of long-range third-order coherence in Bose-Einstein condensates. Science 331, 1046–1049 (2011).

    ADS  Google Scholar 

  18. Perrin, A. et al. Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold. Nat. Phys. 8, 195–198 (2012).

    Google Scholar 

  19. Dall, R. et al. Ideal n-body correlations with massive particles. Nat. Phys. 9, 341–344 (2013).

    Google Scholar 

  20. Carcy, C. et al. Momentum-space atom correlations in a Mott insulator. Phys. Rev. X 9, 041028 (2019).

    Google Scholar 

  21. Tenart, A., Hercé, G., Bureik, J.-P., Dareau, A. & Clément, D. Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas. Nat. Phys. 17, 1364–1368 (2021).

    Google Scholar 

  22. Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006).

    ADS  Google Scholar 

  23. Preiss, P. M. et al. High-contrast interference of ultracold fermions. Phys. Rev. Lett. 122, 143602 (2019).

    ADS  Google Scholar 

  24. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS  Google Scholar 

  25. Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2018).

    ADS  Google Scholar 

  26. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS  Google Scholar 

  27. Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).

    ADS  Google Scholar 

  28. He, X. et al. Coherently forming a single molecule in an optical trap. Science 370, 331–335 (2020).

    ADS  Google Scholar 

  29. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    ADS  Google Scholar 

  30. Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    ADS  Google Scholar 

  31. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  Google Scholar 

  32. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  Google Scholar 

  33. Gross, C. & Bakr, W. S. Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17, 1316–1323 (2021).

    Google Scholar 

  34. Wang, F. et al. Formation of ultracold NaRb Feshbach molecules. New J. Phys. 17, 035003 (2015).

    ADS  Google Scholar 

  35. Wang, F., Li, X., Xiong, D. & Wang, D. A double species 23Na and 87Rb Bose–Einstein condensate with tunable miscibility via an interspecies Feshbach resonance. J. Phys. B 49, 015302 (2015).

    ADS  Google Scholar 

  36. Stöferle, T., Moritz, H., Günter, K., Köhl, M. & Esslinger, T. Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006).

    ADS  Google Scholar 

  37. Hutson, J. M. & Le Sueur, C. R. BOUND and FIELD: programs for calculating bound states of interacting pairs of atoms and molecules. Comput. Phys. Commun. 241, 1–8 (2019).

    ADS  Google Scholar 

  38. Guo, Z. et al. Improved characterization of Feshbach resonances and interaction potentials between 23Na and 87Rb atoms. Phys. Rev. A 105, 023313 (2022).

    ADS  Google Scholar 

  39. Fölling, S. Quantum noise correlation experiments with ultracold atoms. in Quantum Gas Experiments 145–177 (World Scientific, 2014).

  40. Pyzh, M., Krönke, S., Weitenberg, C. & Schmelcher, P. Quantum point spread function for imaging trapped few-body systems with a quantum gas microscope. New J. Phys. 21, 053013 (2019).

    ADS  Google Scholar 

  41. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    ADS  Google Scholar 

  42. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Google Scholar 

  43. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    ADS  Google Scholar 

  44. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    ADS  Google Scholar 

  45. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    ADS  Google Scholar 

  46. Sebby-Strabley, J., Anderlini, M., Jessen, P. S. & Porto, J. V. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 033605 (2006).

    ADS  Google Scholar 

  47. Rosenberg, J., Christakis, L., Guardado-Sanchez, E., Yan, Z. & Bakr, W. Replication data for: observation of the Hanbury Brown and Twiss effect with ultracold molecules. Harvard Dataverse (2022).

Download references


We would like to thank G. Zheng, S. Aggarwal, A. Morningstar and R. Raj for experimental assistance. This work was supported by the NSF (grant no. 1912154) and the David and Lucile Packard Foundation (grant no. 2016-65128). L.C. was supported by the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations



W.S.B. conceived the study and supervised the experiment. J.S.R., L.C., E.G.-S. and Z.Z.Y performed the experiments. J.S.R., L.C. and Z.Z.Y performed the data analysis. All the authors contributed to the article.

Corresponding author

Correspondence to Waseem S. Bakr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Hanns-Christoph Nägerl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–IX, Figs. 1–4 and references.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, J.S., Christakis, L., Guardado-Sanchez, E. et al. Observation of the Hanbury Brown–Twiss effect with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing