Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantum light in complex media and its applications

An Author Correction to this article was published on 17 May 2023

This article has been updated

Abstract

Photons are often referred to as flying quantum bits, a phrase that emphasizes both their quantum character and their ability to carry quantum information between two distant points. To what extent this holds for complex disordered media, such as the turbulent atmosphere or multimode optical fibres, is an active avenue of research. Over the past few decades physicists have discovered fascinating transport properties of classical light in complex media and developed incredibly powerful tools for controlling it. Recently, these findings have been extended to the quantum realm, demonstrating that quantum properties of light can also be controlled while traversing a complex scattering medium. In this Perspective we highlight some of the main developments in this endeavour, as well as their relevance to applications in quantum key distribution, quantum authentication and Boson sampling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum light in disordered samples.
Fig. 2: Quantum wavefront shaping.
Fig. 3: Applications with quantum light in complex media.

Similar content being viewed by others

Change history

References

  1. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

  2. Cao, H., Mosk, A. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. https://doi.org/10.1038/s41567-022-01677-x (2022).

  3. Gerry, C., Knight, P. & Knight, P. L. Introductory Quantum Optics (Cambridge Univ. Press, 2005).

  4. Patra, M. & Beenakker, C. W. J. Propagation of squeezed radiation through amplifying or absorbing random media. Phys. Rev. A 61, 063805 (2000).

    ADS  Google Scholar 

  5. Starshynov, I., Bertolotti, J. & Anders, J. Quantum correlation of light scattered by disordered media. Opt. Express 24, 4662–4671 (2016).

    ADS  Google Scholar 

  6. Lodahl, P., Mosk, A. & Lagendijk, A. Spatial quantum correlations in multiple scattered light. Phys. Rev. Lett. 95, 173901 (2005).

    ADS  Google Scholar 

  7. Skipetrov, S. E. Quantum theory of dynamic multiple light scattering in fluctuating disordered media. Phys. Rev. A 75, (2007).

  8. Lodahl, P. & Lagendijk, A. Transport of quantum noise through random media. Phys. Rev. Lett. 94, 153905 (2005).

    ADS  Google Scholar 

  9. Smolka, S., Huck, A., Andersen, U. L., Lagendijk, A. & Lodahl, P. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light. Phys. Rev. Lett. 102, 193901 (2009).

    ADS  Google Scholar 

  10. Smolka, S., Ott, J. R., Huck, A., Andersen, U. L. & Lodahl, P. Continuous-wave spatial quantum correlations of light induced by multiple scattering. Phys. Rev. A 86, 033814 (2012).

    ADS  Google Scholar 

  11. Aiello, A. & Woerdman, J. P. Intrinsic entanglement degradation by multimode detection. Phys. Rev. A 70, 023808 (2004).

    ADS  Google Scholar 

  12. Candé, M., Goetschy, A. & Skipetrov, S. E. Transmission of quantum entanglement through a random medium. Europhys. Lett. 107, 54004 (2014).

    ADS  Google Scholar 

  13. Beenakker, C. W. J., Venderbos, J. W. F. & van Exter, M. P. Two-photon speckle as a probe of multi-dimensional entanglement. Phys. Rev. Lett. 102, 193601 (2009).

    ADS  Google Scholar 

  14. Peeters, W. H., Moerman, J. J. D. & van Exter, M. P. Observation of two-photon speckle patterns. Phys. Rev. Lett. 104, 173601 (2010).

    ADS  Google Scholar 

  15. Pires, H. D. L., Woudenberg, J. & Van Exter, M. Statistical properties of two-photon speckles. Phys. Rev. A 85, 033807 (2012).

    ADS  Google Scholar 

  16. Van Exter, M., Woudenberg, J., Pires, H. D. L. & Peeters, W. Bosonic, fermionic, and anyonic symmetry in two-photon random scattering. Phys. Rev. A 85, 033823 (2012).

    ADS  Google Scholar 

  17. Safadi, M. et al. Coherent backscattering of entangled photon pairs. Preprint at https://arxiv.org/abs/2203.09650 (2022).

  18. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).

    ADS  Google Scholar 

  19. Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993).

    ADS  Google Scholar 

  20. Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).

    ADS  MathSciNet  Google Scholar 

  21. Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).

    ADS  Google Scholar 

  22. Schreiber, A. et al. A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012).

    ADS  Google Scholar 

  23. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    ADS  Google Scholar 

  24. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013).

    ADS  Google Scholar 

  25. Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).

    ADS  Google Scholar 

  26. Gilead, Y., Verbin, M. & Silberberg, Y. Ensemble-averaged quantum correlations between path-entangled photons undergoing Anderson localization. Phys. Rev. Lett. 115, 133602 (2015).

    ADS  Google Scholar 

  27. Di Giuseppe, G. et al. Einstein-Podolsky-Rosen spatial entanglement in ordered and Anderson photonic lattices. Phys. Rev. Lett. 110, 150503 (2013).

    Google Scholar 

  28. Jiao, Z.-Q. et al. Two-dimensional quantum walks of correlated photons. Optica 8, 1129–1135 (2021).

    ADS  Google Scholar 

  29. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. https://doi.org/10.1038/s41567-022-01723-8 (2022).

  30. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  MATH  Google Scholar 

  31. Huisman, T. J., Huisman, S. R., Mosk, A. P. & Pinkse, P. W. Controlling single-photon Fock-state propagation through opaque scattering media. Appl. Phys. B 116, 603–607 (2014).

    ADS  Google Scholar 

  32. Defienne, H. et al. Nonclassical light manipulation in a multiple-scattering medium. Opt. Lett. 39, 6090–6093 (2014).

    ADS  Google Scholar 

  33. Wolterink, T. A. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 053817 (2016).

    ADS  Google Scholar 

  34. Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    ADS  Google Scholar 

  35. Carpenter, J. et al. Mode multiplexed single-photon and classical channels in a few-mode fiber. Opt. Express 21, 28794–28800 (2013).

    ADS  Google Scholar 

  36. Liu, J. et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 6, eaay0837 (2020).

    ADS  Google Scholar 

  37. Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).

    ADS  Google Scholar 

  38. Liu, C. et al. Single-end adaptive optics compensation for emulated turbulence in a bi-directional 10-mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding. Research 2019, 8326701 (2019).

    Google Scholar 

  39. Zhao, J. et al. Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding. Opt. Express 28, 15376–15391 (2020).

    ADS  Google Scholar 

  40. Cao, Y. et al. Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125, 260503 (2020).

    ADS  Google Scholar 

  41. Lib, O., Hasson, G. & Bromberg, Y. Real-time shaping of entangled photons by classical control and feedback. Sci. Adv. 6, eabb6298 (2020).

    ADS  Google Scholar 

  42. Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397–402 (2017).

    Google Scholar 

  43. Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).

    Google Scholar 

  44. Konrad, T. et al. Evolution equation for quantum entanglement. Nat. Phys. 4, 99–102 (2008).

    Google Scholar 

  45. Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS  Google Scholar 

  46. Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017).

    ADS  Google Scholar 

  47. Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005).

    ADS  Google Scholar 

  48. Hamadou Ibrahim, A., Roux, F. S., McLaren, M., Konrad, T. & Forbes, A. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013).

    ADS  Google Scholar 

  49. Malik, M. et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express 20, 13195–13200 (2012).

    ADS  Google Scholar 

  50. Goyal, S. K., Roux, F. S., Konrad, T. & Forbes, A. et al. The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. J. Opt. 18, 064002 (2016).

    ADS  Google Scholar 

  51. Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    ADS  Google Scholar 

  52. Goorden, S. A., Horstmann, M., Mosk, A. P., Škorić, B. & Pinkse, P. W. H. Quantum-secure authentication of a physical unclonable key. Optica 1, 421–424 (2014).

    ADS  Google Scholar 

  53. Amitonova, L. V. et al. Quantum key establishment via a multimode fiber. Opt. Express 28, 5965–5981 (2020).

    ADS  Google Scholar 

  54. Leedumrongwatthanakun, S. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14, 139–142 (2020).

    ADS  Google Scholar 

  55. Goel, S. et al. Inverse-design of high-dimensional quantum optical circuits in a complex medium. Preprint at https://arxiv.org/abs/2204.00578 (2022).

  56. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. Forty-Third Annual ACM Symposium on Theory of Computing 333–342 (Association for Computing Machinery, 2011).

  57. Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

    ADS  Google Scholar 

  58. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    ADS  Google Scholar 

  59. van der Meer, R., Huber, S., Pinkse, P., García-Patrón, R. & Renema, J. Boson sampling in low-depth optical systems. Preprint at https://arxiv.org/abs/2110.05099 (2021).

  60. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Google Scholar 

  61. Lib, O. & Bromberg, Y. Thermal biphotons. APL Photon. 7, 031301 (2022).

    ADS  Google Scholar 

  62. Cherroret, N. & Buchleitner, A. Entanglement and thouless times from coincidence measurements across disordered media. Phys. Rev. A 83, 033827 (2011).

    ADS  Google Scholar 

  63. Candé, M. & Skipetrov, S. E. Quantum versus classical effects in two-photon speckle patterns. Phys. Rev. A 87, 013846 (2013).

    ADS  Google Scholar 

  64. Pe’Er, A., Dayan, B., Friesem, A. A. & Silberberg, Y. Temporal shaping of entangled photons. Phys. Rev. Lett. 94, 073601 (2005).

    ADS  Google Scholar 

  65. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Google Scholar 

  66. Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016).

    ADS  Google Scholar 

  67. Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys Photonics https://iopscience.iop.org/article/10.1088/2515-7647/ac76f9/meta (2022).

  68. Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    ADS  Google Scholar 

  69. Brida, G., Genovese, M. & Berchera, I. R. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    ADS  Google Scholar 

  70. Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

    ADS  Google Scholar 

  71. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    ADS  Google Scholar 

  72. Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    Google Scholar 

  73. Shi, L., Galvez, E. J. & Alfano, R. R. Photon entanglement through brain tissue. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  74. Lum, D. J. et al. Witnessing the survival of time-energy entanglement through biological tissue and scattering media. Biomed. Opt. Express 12, 3658–3670 (2021).

    Google Scholar 

  75. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    ADS  Google Scholar 

  76. Kim, D. & Englund, D. R. Quantum reference beacon–guided superresolution optical focusing in complex media. Science 363, 528–531 (2019).

    ADS  Google Scholar 

  77. Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M. & Fickler, R. High-dimensional quantum gates using full-field spatial modes of photons. Optica 7, 98–107 (2020).

    ADS  Google Scholar 

  78. Hiekkamäki, M. & Fickler, R. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett. 126, 123601 (2021).

    ADS  Google Scholar 

  79. Lib, O., Sulimany, K. & Bromberg, Y. Reconfigurable synthesizer for quantum information processing of high-dimensional entangled photons. Preprint at https://arxiv.org/abs/2108.02258 (2021).

  80. Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

    ADS  Google Scholar 

  81. Gnatiessoro, S., Mosset, A., Lantz, E. & Devaux, F. Imaging spatial quantum correlations through a thin scattering medium. OSA Contin. 2, 3393–3403 (2019).

    Google Scholar 

  82. Madonini, F., Severini, F., Zappa, F. & Villa, F. Single photon avalanche diode arrays for quantum imaging and microscopy. Adv. Quantum Technol. 4, 2100005 (2021).

    Google Scholar 

  83. Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    ADS  Google Scholar 

  84. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Shlomi Kotler for invaluable assistance in preparing this Perspective. Funding was provided by the Zuckerman STEM Leadership Program, the ISF-NRF Singapore Joint Research Program (grant no. 3538/20), and the Israel Science Foundation (grant no. 2497/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Bromberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Hugo Defienne and Andrew Forbes for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lib, O., Bromberg, Y. Quantum light in complex media and its applications. Nat. Phys. 18, 986–993 (2022). https://doi.org/10.1038/s41567-022-01692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01692-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing