Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Holographic dynamics simulations with a trapped-ion quantum computer


Quantum computers promise to efficiently simulate quantum dynamics, a classically intractable task central to fields ranging from chemistry to high-energy physics. Yet, quantum computational advantage has only been demonstrated for artificial tasks such as random circuit sampling, and hardware limitations and noise have limited experiments to qualitative studies of small-scale systems. Quantum processors capable of high-fidelity measurements and qubit reuse enable a recently proposed holographic technique that employs quantum tensor-network states, a class of states that efficiently compress quantum data, to simulate the evolution of infinitely long, entangled initial states using a small number of qubits. Here we benchmark this holographic technique in a trapped-ion quantum processor using 11 qubits to simulate the dynamics of an infinite entangled state. We observe the hallmarks of quantum chaos and light-cone propagation of correlations, and find excellent quantitative agreement with theoretical predictions for the infinite-size limit of the implemented model with minimal post-processing or error mitigation. These results show that quantum tensor-network methods, paired with state-of-the-art quantum processor capabilities, offer a viable route to practical quantum computational advantage on problems of direct interest to science and technology in the near term.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Holographic simulation of the kicked Ising model.
Fig. 2: Quantum computer used in this work.
Fig. 3: Experimental data.

Data availability

The raw data produced by the Quantinuum devices for this work are available in Supplementary Data 1.

Code availability

The code used to generate data for this work is available from the corresponding author upon reasonable request.


  1. D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239–362 (2016).

    ADS  Article  Google Scholar 

  2. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  3. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  4. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 115, 9456–9461 (2018).

  5. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Article  Google Scholar 

  6. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  7. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  8. Kim, I. H. Holographic quantum simulation. Preprint at (2017).

  9. Kim, I. H. and Swingle, B. Robust entanglement renormalization on a noisy quantum computer. Preprint at (2017)

  10. Foss-Feig, M. et al. Holographic quantum algorithms for simulating correlated spin systems. Phys. Rev. Research 3, 033002 (2021).

    ADS  Article  Google Scholar 

  11. Liu, J.-G., Zhang, Y.-H., Wan, Y. and Wang, L. Variational quantum eigensolver with fewer qubits. Phys. Rev. Res. 1, 023025 (2019).

  12. Barratt, F. et al. Parallel quantum simulation of large systems on small quantum computers. NPJ Quantum Inf. 7, 79 (2020).

  13. Lin, Sheng-Hsuan, Dilip, R., Green, A. G., Smith, A. & Pollmann, F. Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021).

    Article  Google Scholar 

  14. Smith, A., Jobst, B., Green, A. G. and Pollmann, F. Crossing a topological phase transition with a quantum computer. Phys. Rev. Res. 4, L022020 (2019).

  15. Yuan, X., Sun, J., Liu, J., Zhao, Q. and Zhou, Y. Quantum simulation with hybrid tensor networks. Phys. Rev. Lett. 127, 04051 (2020).

  16. Eddins, A. et al. Doubling the size of quantum simulators by entanglement forging. PRX Quantum 3, 010309 (2021).

  17. Bravo-Prieto, C., Lumbreras-Zarapico, J., Tagliacozzo, L. & Latorre, JoséI. Scaling of variational quantum circuit depth for condensed matter systems. Quantum 4, 272 (2020).

    Article  Google Scholar 

  18. Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, P04010 (2005).

    MathSciNet  Article  Google Scholar 

  19. Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    ADS  Article  Google Scholar 

  20. Huggins, W., Patil, P., Mitchell, B., Whaley, K. B. & Stoudenmire, E. M. Towards quantum machine learning with tensor networks. Quantum Sci. Technol. 4, 024001 (2019).

    ADS  Article  Google Scholar 

  21. Akila, M., Gutkin, B. & Guhr, T. Particle-time duality in the kicked Ising spin chain. J. Phys. A: Math. Theor. 49, 375101 (2016).

    MathSciNet  Article  Google Scholar 

  22. Bertini, B., Kos, P. & Prosen, T. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018).

    ADS  Article  Google Scholar 

  23. Bertini, B., Kos, P. & Prosen, T. Exact correlation functions for dual-unitary lattice models in 1 + 1 dimensions. Phys. Rev. Lett. 123, 210601 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  24. Gopalakrishnan, S. & Lamacraft, A. Unitary circuits of finite depth and infinite width from quantum channels. Phys. Rev. B 100, 064309 (2019).

    ADS  Article  Google Scholar 

  25. Piroli, L., Bertini, B., Cirac, J. I. & Prosen, T. Exact dynamics in dual-unitary quantum circuits. Phys. Rev. B 101, 094304 (2020).

    ADS  Article  Google Scholar 

  26. Bertini, B., Kos, P. & Prosen, T. Operator entanglement in local quantum circuits I: chaotic dual-unitary circuits. SciPost Phys. 8, 067 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  27. Claeys, P. W. & Lamacraft, A. Ergodic and nonergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension. Phys. Rev. Lett. 126, 100603 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  28. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    ADS  Article  Google Scholar 

  29. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    ADS  Article  Google Scholar 

  30. Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    ADS  Article  Google Scholar 

  31. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    ADS  Article  Google Scholar 

  32. Fishman, M., White, S. R. and Stoudenmire, E. M. The ITensor software library for tensor network calculations. Preprint at (2020).

  33. Claeys, P. W. & Lamacraft, A. Maximum velocity quantum circuits. Phys. Rev. Research 2, 033032 (2020).

    ADS  Article  Google Scholar 

  34. Zaletel, M. P. & Pollmann, F. Isometric tensor network states in two dimensions. Phys. Rev. Lett. 124, 037201 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  35. Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    ADS  Article  Google Scholar 

  36. Palmero, M., Bowler, R., Gaebler, J. P., Leibfried, D. & Muga, J. G. Fast transport of mixed-species ion chains within a Paul trap. Phys. Rev. A 90, 053408 (2014).

    ADS  Article  Google Scholar 

  37. Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289–325 (2006).

    MATH  Google Scholar 

  38. Splatt, F. et al. Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap. New J. Phys. 11, 103008 (2009).

    ADS  Article  Google Scholar 

  39. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    MathSciNet  Article  Google Scholar 

  40. Abraham, H. et al. Qiskit: an open-source framework for quantum computing. Zenodo (2019).

Download references


This work was made possible by a large group of people, and the authors would like to thank the entire Quantinuum team for their many contributions. The experiments reported in this manuscript were performed on Quantinuum’s H1-1 and H1-2 system models, which are powered by Honeywell ion traps. We thank C. Baldwin for helpful discussions regarding the performance benchmarks on H1-1 and H1-2. We used the ITensor library32, written in Julia39, to perform the tensor-network contractions to generate the theory curves. Quantum circuits were prepared and simulated using the Qiskit library created by IBM40. A.C.P. was supported by NSF Convergence Accelerator Track C award 2040549.

Author information

Authors and Affiliations



E.C., M.F.-F. and A.C.P. conceived the experiment. J.B., D.F., J.G., D.G., A.H., K.L., B.N. and R.S. executed the experiment on the Quantinuum quantum computer. E.C. performed the theoretical analysis and numerical simulations. E.C., M.F.-F. and A.C.P. analysed the experimental data. M.F.-F. and D.H. coordinated and supervised the project. E.C., M.F.-F., A.C.P. and D.H. wrote the manuscript and the Supplementary Information. All the authors edited the manuscript.

Corresponding author

Correspondence to Eli Chertkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Luca Tagliacozzo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, discussion and references.

Supplementary Data 1

Experimental data used to produce the figures in the manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chertkov, E., Bohnet, J., Francois, D. et al. Holographic dynamics simulations with a trapped-ion quantum computer. Nat. Phys. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing