Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping the propagation of light in complex media

Subjects

Abstract

The main obstacle for optical imaging or for sending information through turbid media such as paint, clouds and biological tissue is the random scattering of light. Owing to its immense complexity, the process of multiple scattering has long been described by the diffusion equation, which ignores the interference of scattered light. Recent developments in optical wavefront shaping and phase recording techniques have enabled the breaking of the diffusion limit and the control of coherent light transport in complex media, including strongly scattering tissues and multimode optical fibres with random mode mixing. Great advances have been made in focusing and controlling the transmission of light through such complex systems and in performing various tasks behind them, such as optical micro-manipulation. Here, we summarize the amazing power and the fundamental limits of controlling multiple light scattering, which lay the physical foundation to harness multiply-scattered light for imaging and communication purposes. Connections to practical applications are illustrated, in particular in those areas covered in the companion articles in this issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wavefront shaping.
Fig. 2: Excitation of transmission eigenchannels to control transmittance and internal energy.
Fig. 3: Spatial and spatio-temporal focusing of light through multiple-scattering samples.
Fig. 4: Controlling light transmitted through MMFs.
Fig. 5: Customized modes in complex media.

Similar content being viewed by others

References

  1. Balian, R., Maynard, R. & Toulouse, G. Les Houches 1978, Session XXXI (North-Holland, 1984); https://www.worldscientific.com/doi/abs/10.1142/0031

  2. Freund, I. Looking through walls and around corners. Phys. A Stat. Mech. Appl. 168, 49–65 (1990).

    Article  Google Scholar 

  3. Fink, M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

    Article  Google Scholar 

  4. Lerosey, G., Rosny, J. D., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  5. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  6. Leith, E. N. & Upatnieks, J. Holographic imagery through diffusing media. J. Opt. Soc. Am. 56, 523 (1966).

    Article  Google Scholar 

  7. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  8. Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    Article  ADS  Google Scholar 

  9. Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    Article  ADS  Google Scholar 

  10. Vellekoop, I. M. & Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  11. Yu, H., Lee, K. & Park, Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Opt. Express 25, 8036–8047 (2017).

    Article  ADS  Google Scholar 

  12. Vellekoop, I. M., Van Putten, E., Lagendijk, A. & Mosk, A. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    Article  ADS  Google Scholar 

  13. Ruan, H. et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4, 1337–1343 (2017).

    Article  ADS  Google Scholar 

  14. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  Google Scholar 

  15. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  16. van Putten, E. G. et al. Scattering lens resolves sub-100-nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Article  ADS  Google Scholar 

  17. Mahalati, R. N., Gu, R. Y. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013).

    Article  ADS  Google Scholar 

  18. Park, J.-H. et al. Subwavelength light focusing using random nanoparticles. Nat. Photon. 7, 454–458 (2013).

    Article  ADS  Google Scholar 

  19. Guan, Y., Katz, O., Small, E., Zhou, J. & Silberberg, Y. Polarization control of multiply scattered light through random media by wavefront shaping. Opt. Lett. 37, 4663–4665 (2012).

    Article  ADS  Google Scholar 

  20. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    Article  ADS  Google Scholar 

  21. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  22. McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nat. Commun. 2, 447 (2011).

    Article  ADS  Google Scholar 

  23. Small, E., Katz, O., Guan, Y. & Silberberg, Y. Spectral control of broadband light through random media by wavefront shaping. Opt. Lett. 37, 3429–3431 (2012).

    Article  ADS  Google Scholar 

  24. Daniel, A., Liberman, L. & Silberberg, Y. Wavefront shaping for glare reduction. Optica 3, 1104–1106 (2016).

    Article  ADS  Google Scholar 

  25. Zhou, E. H., Shibukawa, A., Brake, J., Ruan, H. & Yang, C. Glare suppression by coherence gated negation. Optica 3, 1107–1113 (2016).

    Article  ADS  Google Scholar 

  26. Sarma, R., Yamilov, A. G., Petrenko, S., Bromberg, Y. & Cao, H. Control of energy density inside a disordered medium by coupling to open or closed channels. Phys. Rev. Lett. 117, 086803 (2016).

    Article  ADS  Google Scholar 

  27. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  28. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010).

    Article  ADS  Google Scholar 

  29. Liutkus, A. et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 4, 5552 (2014).

    Article  Google Scholar 

  30. Mounaix, M., Defienne, H. & Gigan, S. Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach. Phys. Rev. A 94, 041802 (2016).

    Article  ADS  Google Scholar 

  31. Katz, O., Ramaz, F., Gigan, S. & Fink, M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat. Commun. 10, 717 (2019).

    Article  ADS  Google Scholar 

  32. Gradoni, G. et al. Smart radio environments. Preprint at https://arxiv.org/abs/2111.08676 (2021).

  33. Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).

    Article  ADS  Google Scholar 

  34. Park, J.-H., Yu, Z., Lee, K., Lai, P. & Park, Y. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photonics 3, 100901 (2018).

    Article  ADS  Google Scholar 

  35. Park, J.-H., Park, J., Lee, K. & Park, Y. Disordered optics: exploiting multiple light scattering and wavefront shaping for nonconventional optical elements. Adv. Mater. 32, 1903457 (2020).

    Article  Google Scholar 

  36. Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    Article  ADS  Google Scholar 

  37. Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

    Article  ADS  Google Scholar 

  38. Shi, Z., Davy, M. & Genack, A. Z. Statistics and control of waves in disordered media. Opt. Express 23, 12293–12320 (2015).

    Article  ADS  Google Scholar 

  39. Kim, M., Choi, W., Choi, Y., Yoon, C. & Choi, W. Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648–12668 (2015).

    Article  ADS  Google Scholar 

  40. Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

    Article  ADS  Google Scholar 

  41. Miller, D. A. B. Waves, modes, communications and optics: a tutorial. Adv. Opt. Photon. 11, 679–825 (2019).

    Article  Google Scholar 

  42. Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141–158 (2020).

    Article  Google Scholar 

  43. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    Article  ADS  Google Scholar 

  44. Nazarov, Y. V. & Blanter, Y. M. Quantum Transport: Introduction to Nanoscience (Cambridge Univ. Press, 2009).

  45. Dorokhov, O. On the coexistence of localized and extended electronic states in the metallic phase. Solid State Commun. 51, 381–384 (1984).

    Article  ADS  Google Scholar 

  46. Mello, P., Pereyra, P. & Kumar, N. Macroscopic approach to multichannel disordered conductors. Ann. Phys. 181, 290–317 (1988).

    Article  ADS  Google Scholar 

  47. Vellekoop, I. M. & Mosk, A. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    Article  ADS  Google Scholar 

  48. Popoff, S., Goetschy, A., Liew, S., Stone, A. D. & Cao, H. Coherent control of total transmission of light through disordered media. Phys. Rev. Lett. 112, 133903 (2014).

    Article  ADS  Google Scholar 

  49. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

    Article  ADS  Google Scholar 

  50. Shi, Z. & Genack, A. Z. Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett. 108, 043901 (2012).

    Article  ADS  Google Scholar 

  51. Davy, M., Shi, Z., Wang, J., Cheng, X. & Genack, A. Z. Transmission eigenchannels and the densities of states of random media. Phys. Rev. Lett. 114, 033901 (2015).

    Article  ADS  Google Scholar 

  52. Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).

    Article  ADS  Google Scholar 

  53. Bender, N., Yamilov, A., Yılmaz, H. & Cao, H. Fluctuations and correlations of transmission eigenchannels in diffusive media. Phys. Rev. Lett. 125, 165901 (2020).

    Article  ADS  Google Scholar 

  54. Choi, W., Mosk, A. P., Park, Q.-H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  55. Davy, M., Shi, Z., Park, J., Tian, C. & Genack, A. Z. Universal structure of transmission eigenchannels inside opaque media. Nat. Commun. 6, 6893 (2015).

    Article  ADS  Google Scholar 

  56. Hong, P., Ojambati, O. S., Lagendijk, A., Mosk, A. P. & Vos, W. L. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844–849 (2018).

    Article  ADS  Google Scholar 

  57. Horodynski, M., Kühmayer, M., Ferise, C., Rotter, S. & Davy, M. Anti-reflection structure for perfect transmission through complex media. Nature 607, 281–286 (2022).

    Article  ADS  Google Scholar 

  58. Sarma, R., Golubev, T., Yamilov, A. & Cao, H. Control of light diffusion in a disordered photonic waveguide. Appl. Phys. Lett. 105, 041104 (2014).

    Article  ADS  Google Scholar 

  59. Sarma, R., Yamilov, A., Liew, S. F., Guy, M. & Cao, H. Control of mesoscopic transport by modifying transmission channels in opaque media. Phys. Rev. B 92, 214206 (2015).

    Article  ADS  Google Scholar 

  60. Koirala, M., Sarma, R., Cao, H. & Yamilov, A. Inverse design of perfectly transmitting eigenchannels in scattering media. Phys. Rev. B 96, 054209 (2017).

    Article  ADS  Google Scholar 

  61. Yılmaz, H., Hsu, C. W., Yamilov, A. & Cao, H. Transverse localization of transmission eigenchannels. Nat. Photon. 13, 352–358 (2019).

    Article  ADS  Google Scholar 

  62. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Controlling light through optical disordered media: transmission matrix approach. New J. Phys. 13, 123021 (2011).

    Article  ADS  Google Scholar 

  63. Goetschy, A. & Stone, A. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

    Article  ADS  Google Scholar 

  64. Bosch, J., Goorden, S. A. & Mosk, A. P. Frequency width of open channels in multiple scattering media. Opt. Express 24, 26472–26478 (2016).

    Article  ADS  Google Scholar 

  65. Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).

    Article  ADS  Google Scholar 

  66. Van Beijnum, F., Van Putten, E. G., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

    Article  ADS  Google Scholar 

  67. Davy, M., Shi, Z. & Genack, A. Z. Focusing through random media: eigenchannel participation number and intensity correlation. Phys. Rev. B 85, 035105 (2012).

    Article  ADS  Google Scholar 

  68. Davy, M., Shi, Z., Wang, J. & Genack, A. Z. Transmission statistics and focusing in single disordered samples. Opt. Express 21, 10367–10375 (2013).

    Article  ADS  Google Scholar 

  69. Andreoli, D. et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci. Rep. 5, 10347 (2015).

    Article  ADS  Google Scholar 

  70. Shi, Z., Davy, M., Wang, J. & Genack, A. Z. Focusing through random media in space and time: a transmission matrix approach. Opt. Lett. 38, 2714–2716 (2013).

    Article  ADS  Google Scholar 

  71. Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016).

    Article  ADS  Google Scholar 

  72. van Putten, E. G., Lagendijk, A. & Mosk, A. Optimal concentration of light in turbid materials. J. Opt. Soc. Am. B 28, 1200–1203 (2011).

    Article  ADS  Google Scholar 

  73. Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014).

    Article  ADS  Google Scholar 

  74. Ambichl, P. et al. Focusing inside disordered media with the generalized Wigner–Smith operator. Phys. Rev. Lett. 119, 033903 (2017).

    Article  ADS  Google Scholar 

  75. Horodynski, M. et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photon. 14, 149–153 (2020).

    Article  ADS  Google Scholar 

  76. Bender, N. et al. Depth-targeted energy delivery deep inside scattering media. Nat. Phys. 18, 309–315 (2022).

    Article  Google Scholar 

  77. Choi, Y. et al. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium. Phys. Rev. Lett. 111, 243901 (2013).

    Article  ADS  Google Scholar 

  78. Jeong, S. et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photon. 12, 277–283 (2018).

    Article  ADS  Google Scholar 

  79. Liew, S. F., Popoff, S. M., Mosk, A. P., Vos, W. L. & Cao, H. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport. Phys. Rev. B 89, 224202 (2014).

    Article  ADS  Google Scholar 

  80. Liew, S. F. & Cao, H. Modification of light transmission channels by inhomogeneous absorption in random media. Opt. Express 23, 11043–11053 (2015).

    Article  ADS  Google Scholar 

  81. Sarma, R., Yamilov, A. & Cao, H. Enhancing light transmission through a disordered waveguide with inhomogeneous scattering and loss. Appl. Phys. Lett. 110, 021103 (2017).

    Article  ADS  Google Scholar 

  82. Yamilov, A. G., Sarma, R., Yakovlev, V. V. & Cao, H. Coherent injection of light into an absorbing scattering medium with a microscopic pore. Opt. Lett. 43, 2189–2192 (2018).

    Article  ADS  Google Scholar 

  83. Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article  ADS  Google Scholar 

  84. Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    Article  ADS  Google Scholar 

  85. Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351–355 (2019).

    Article  ADS  Google Scholar 

  86. Chong, Y. & Stone, A. D. Hidden black: coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

    Article  ADS  Google Scholar 

  87. Yamilov, A., Petrenko, S., Sarma, R. & Cao, H. Shape dependence of transmission, reflection, and absorption eigenvalue densities in disordered waveguides with dissipation. Phys. Rev. B 93, 100201 (2016).

    Article  ADS  Google Scholar 

  88. Liew, S. F. et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photonics 3, 449–455 (2016).

    Article  Google Scholar 

  89. Ho, K.-P. & Kahn, J. M. Linear propagation effects in mode-division multiplexing systems. J. Lightwave Technol. 32, 614–628 (2013).

    Article  ADS  Google Scholar 

  90. Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B. & Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express 21, 12881–12887 (2013).

    Article  ADS  Google Scholar 

  91. Xiong, W. et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt. Express 25, 2709–2724 (2017).

    Article  ADS  Google Scholar 

  92. Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011).

    Article  ADS  Google Scholar 

  93. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    Article  ADS  Google Scholar 

  94. Mahalati, R. N., Askarov, D., Wilde, J. P. & Kahn, J. M. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt. Express 20, 14321–14337 (2012).

    Article  ADS  Google Scholar 

  95. Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).

    Article  ADS  Google Scholar 

  96. Amitonova, L. V. et al. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging. Opt. Lett. 41, 497–500 (2016).

    Article  ADS  Google Scholar 

  97. Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).

    Article  ADS  Google Scholar 

  98. Stellinga, D. et al. Time-of-flight 3D imaging through multimode optical fibers. Science 374, 1395–1399 (2021).

    Article  ADS  Google Scholar 

  99. Morales-Delgado, E. E., Farahi, S., Papadopoulos, I. N., Psaltis, D. & Moser, C. Delivery of focused short pulses through a multimode fiber. Opt. Express 23, 9109–9120 (2015).

    Article  ADS  Google Scholar 

  100. Xiong, W., Hsu, C. W. & Cao, H. Long-range spatio-temporal correlations in multimode fibers for pulse delivery. Nat. Commun. 10, 2973 (2019).

    Article  ADS  Google Scholar 

  101. Mounaix, M. et al. Time reversed optical waves by arbitrary vector spatiotemporal field generation. Nat. Commun. 11, 5813 (2020).

    Article  ADS  Google Scholar 

  102. Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Winful, H. G. Delay time and the Hartman effect in quantum tunneling. Phys. Rev. Lett. 91, 260401 (2003).

    Article  ADS  Google Scholar 

  105. Rotter, S., Ambichl, P. & Libisch, F. Generating particlelike scattering states in wave transport. Phys. Rev. Lett. 106, 120602 (2011).

    Article  ADS  Google Scholar 

  106. Gérardin, B. et al. Particlelike wave packets in complex scattering systems. Phys. Rev. B 94, 014209 (2016).

    Article  ADS  Google Scholar 

  107. Böhm, J., Brandstötter, A., Ambichl, P., Rotter, S. & Kuhl, U. In situ realization of particlelike scattering states in a microwave cavity. Phys. Rev. A 97, 021801 (2018).

    Article  ADS  Google Scholar 

  108. Durand, M., Popoff, S. M., Carminati, R. & Goetschy, A. Optimizing light storage in scattering media with the dwell-time operator. Phys. Rev. Lett. 123, 243901 (2019).

    Article  ADS  Google Scholar 

  109. Davy, M., Shi, Z., Wang, J., Cheng, X. & Genack, A. Z. Transmission eigenchannels and the densities of states of random media. Phys. Rev. Lett. 114, 033901 (2015).

    Article  ADS  Google Scholar 

  110. del Hougne, P. et al. Experimental realization of optimal energy storage in resonators embedded in scattering media. Laser Photon. Rev. 15, 2000335 (2021).

    Article  ADS  Google Scholar 

  111. Fan, S. & Kahn, J. M. Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005).

    Article  ADS  Google Scholar 

  112. Carpenter, J., Eggleton, B. J. & Schröder, J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photon. 9, 751–757 (2015).

    Article  ADS  Google Scholar 

  113. Xiong, W. et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys. Rev. Lett. 117, 053901 (2016).

    Article  ADS  Google Scholar 

  114. Ambichl, P. et al. Super- and anti-principal-modes in multimode waveguides. Phys. Rev. X 7, 041053 (2017).

    Google Scholar 

  115. Polin, M., Ladavac, K., Lee, S.-H., Roichman, Y. & Grier, D. G. Optimized holographic optical traps. Opt. Express 13, 5831–5845 (2005).

    Article  ADS  Google Scholar 

  116. Cižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388–394 (2010).

    Article  ADS  Google Scholar 

  117. Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011).

    Article  ADS  Google Scholar 

  118. Taylor, M. A. Optimizing phase to enhance optical trap stiffness. Sci. Rep. 7, 555 (2017).

    Article  ADS  Google Scholar 

  119. Fernandez-Corbaton, I. & Rockstuhl, C. Unified theory to describe and engineer conservation laws in light-matter interactions. Phys. Rev. A 95, 053829 (2017).

    Article  ADS  Google Scholar 

  120. Liu, Y. et al. Optimal nanoparticle forces, torques and illumination fields. ACS Photonics 6, 395–402 (2019).

    Article  Google Scholar 

  121. Mazilu, M., Baumgartl, J., Kosmeier, S. & Dholakia, K. Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt. Express 19, 933–945 (2011).

    Article  ADS  Google Scholar 

  122. Cheng, X. & Genack, A. Z. Focusing and energy deposition inside random media. Opt. Lett. 39, 6324–6327 (2014).

    Article  ADS  Google Scholar 

  123. Matthès, M. W., Bromberg, Y., de Rosny, J. & Popoff, S. M. Learning and avoiding disorder in multimode fibers. Phys. Rev. X 11, 021060 (2021).

    Google Scholar 

  124. Hüpfl, J. et al. Optimal cooling of multiple levitated particles through far-field wavefront-shaping. Preprint at https://arxiv.org/abs/2103.12592 (2021).

  125. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  126. Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).

    Article  ADS  Google Scholar 

  127. Lambert, W., Cobus, L. A., Frappart, T., Fink, M. & Aubry, A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc. Natl Acad. Sci. USA 117, 14645–14656 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Pai, P., Bosch, J., Kühmayer, M., Rotter, S. & Mosk, A. P. Scattering invariant modes of light in complex media. Nat. Photon. 15, 431–434 (2021).

    Article  ADS  Google Scholar 

  129. Yılmaz, H., Kühmayer, M., Hsu, C. W., Rotter, S. & Cao, H. Customizing the angular memory effect for scattering media. Phys. Rev. X 11, 031010 (2021).

    Google Scholar 

  130. Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).

    Article  Google Scholar 

  131. Bouchet, D., Rachbauer, L. M., Rotter, S., Mosk, A. P. & Bossy, E. Optimal control of coherent light scattering for binary decision problems. Phys. Rev. Lett. 127, 253902 (2021).

    Article  ADS  Google Scholar 

  132. Helstrom, C. W. (ed.) Quantum Detection and Estimation Theory (Academic, 1976).

  133. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

  134. Yu, H. et al. Measuring large optical transmission matrices of disordered media. Phys. Rev. Lett. 111, 153902 (2013).

    Article  ADS  Google Scholar 

  135. Tao, X., Bodington, D., Reinig, M. & Kubby, J. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing. Opt. Express 23, 14168–14187 (2015).

    Article  ADS  Google Scholar 

  136. Drémeau, A. et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015).

    Article  ADS  Google Scholar 

  137. Blochet, B., Bourdieu, L. & Gigan, S. Focusing light through dynamical samples using fast continuous wavefront optimization. Opt. Lett. 42, 4994–4997 (2017).

    Article  ADS  Google Scholar 

  138. Kubby, J., Gigan, S. & Cui, M. Wavefront Shaping for Biomedical Imaging (Cambridge Univ. Press, 2019).

  139. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. https://doi.org/10.1038/s41567-022-01723-8 (2022).

  140. Turpin, A., Vishniakou, I. & Seelig, J. D. Light scattering control in transmission and reflection with neural networks. Opt. Express 26, 30911–30929 (2018).

    Article  ADS  Google Scholar 

  141. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  142. Gigan, S. Imaging and computing with disorder. Nat. Phys. https://doi.org/10.1038/s41567-022-01681-1 (2022).

  143. Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, eabg3027 (2021).

    Article  Google Scholar 

  144. García de Abajo, F. J. & Konecná, A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021).

    Article  ADS  Google Scholar 

  145. Brandstötter, A., Girschik, A., Ambichl, P. & Rotter, S. Shaping the branched flow of light through disordered media. Proc. Natl Acad. Sci. USA 116, 13260–13265 (2019).

    Article  ADS  Google Scholar 

  146. Patsyk, A., Sivan, U., Segev, M. & Bandres, M. A. Observation of branched flow of light. Nature 583, 60–65 (2020).

    Article  ADS  Google Scholar 

  147. Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    Article  ADS  Google Scholar 

  148. Lib, O., Hasson, G. & Bromberg, Y. Real-time shaping of entangled photons by classical control and feedback. Sci. Adv. 6, eabb6298 (2020).

    Article  ADS  Google Scholar 

  149. Defienne, H. et al. Nonclassical light manipulation in a multiple-scattering medium. Opt. Lett. 39, 6090–6093 (2014).

    Article  ADS  Google Scholar 

  150. Lib, O. & Bromberg, Y. Quantum light in complex media and its applications. Nat. Phys. https://doi.org/10.1038/s41567-022-01692-y (2022).

  151. Wright, L. G., Wu, F. O., Christodoulides, D. N. & Wise, F. W. Physics of highly multimode nonlinear optical systems. Nat. Phys. https://doi.org/10.1038/s41567-022-01691-z (2022).

  152. Yu, H. et al. Measuring large optical transmission matrices of disordered media. Phys. Rev. Lett. 111, 153902 (2013).

    Article  ADS  Google Scholar 

  153. Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351–355 (2019).

    Article  ADS  Google Scholar 

  154. Leedumrongwatthanakun, S. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14, 139–142 (2020).

    Article  ADS  Google Scholar 

  155. Philibert, J. One and a half century of diffusion: Fick, Einstein before and beyond. Diffus. Fundam. 4, 6.1–6.9 (2006).

    Google Scholar 

  156. Ishimaru, A. Wave Propagation and Scattering in Random Media (Academic, 1978).

    MATH  Google Scholar 

  157. van Albada, M. P., van Tiggelen, B. A., Tip, A. & Lagendijk, A. Speed of propagation of classical waves in strongly scattering media. Phys. Rev. Lett. 66, 3132–3135 (1991).

    Article  ADS  Google Scholar 

  158. Chandrasekhar, S. Radiative Transfer (Dover Publications, 1960).

    MATH  Google Scholar 

  159. Lagendijk, A., Vreeker, R. & De Vries, P. Influence of internal reflection on diffusive transport in strongly scattering media. Phys. Lett. A 136, 81–88 (1989).

    Article  ADS  Google Scholar 

  160. Zhu, J. X., Pine, D. J. & Weitz, D. A. Internal reflection of diffusive light in random media. Phys. Rev. A 44, 3948–3959 (1991).

    Article  ADS  Google Scholar 

  161. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009).

    Article  Google Scholar 

  162. Akdemir, O., Lagendijk, A. & Vos, W. L. Breakdown of light transport models in photonic scattering slabs with strong absorption and anisotropy. Phys. Rev. A 105, 033517 (2022).

    Article  ADS  Google Scholar 

  163. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  ADS  Google Scholar 

  164. Liu, T. & Fiore, A. Designing open channels in random scattering media for on-chip spectrometers. Optica 7, 934–939 (2020).

    Article  ADS  Google Scholar 

  165. Nazarov, Y. V. Weak localization and the transmission matrix. Phys. Rev. B 52, 4720–4723 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank all present and past collaborators for their contributions to the work covered in this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Article.

Corresponding author

Correspondence to Hui Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Mosk, A.P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022). https://doi.org/10.1038/s41567-022-01677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01677-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing