Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature

Abstract

Piezomagnetism couples strain linearly to magnetic order, implying that it can produce and control magnetization. However, unlike magnetostriction, which couples magnetization quadratically to strain, it enables bidirectional control of a net magnetic moment. If this effect becomes large at room temperature, it may be technologically relevant, similar to its electric analogue, piezoelectricity. However, current studies of the piezomagnetic effect have been primarily restricted to antiferromagnetic insulators at cryogenic temperatures. Here we report the observation of large piezomagnetism in the antiferromagnetic Weyl semimetal Mn3Sn at room temperature. This material is known for its nearly magnetization-free anomalous Hall effect. We find that a small uniaxial strain on the order of 0.1% can control both the sign and size of the anomalous Hall effect. Our experiment and theory show that the piezomagnetism can control the anomalous Hall effect, which will be useful for spintronics applications.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The 120° antichiral magnetic structure of Mn3Sn and piezomagnetic control of the magnetization M and the divergence of its direction from the order parameter K.
Fig. 2: The piezomagnetic effect in the topological antiferromagnet Mn3Sn under in-plane uniaxial compression.
Fig. 3: The AHE of the Weyl antiferromagnet Mn3Sn and its sign reversal under in-plane uniaxial strain.
Fig. 4: Distinct strain controls of the Hall vector K under a magnetic field in the ferrohalic, parahallic and diahallic regimes.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the plots within this paper and other findings of this study are available on GitHub (https://github.com/SayakD-hub/Mn_3_X_Hall).

References

  1. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  ADS  Google Scholar 

  2. Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

    Article  ADS  Google Scholar 

  3. Song, C., Cui, B., Li, F., Zhou, X. & Pan, F. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater. Sci. 87, 33–82 (2017).

    Article  Google Scholar 

  4. Dzialoshinskii, I. E. The problem of piezomagnetism. Sov. Phys. JETP 6, 621–622 (1958).

    ADS  Google Scholar 

  5. Borovik-Romanov, A. Piezomagnetism, linear magnetostriction and magnetooptic effect. Ferroelectrics 162, 153–159 (1994).

    Article  Google Scholar 

  6. Lukashev, P., Sabirianov, R. F. & Belashchenko, K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys. Rev. B 78, 184414 (2008).

    Article  ADS  Google Scholar 

  7. Zemen, J., Gercsi, Z. & Sandeman, K. Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides. Phys. Rev. B 96, 024451 (2017).

    Article  ADS  Google Scholar 

  8. Jaime, M. et al. Piezomagnetism and magnetoelastic memory in uranium dioxide. Nat. Commun. 8, 99 (2017).

    Article  ADS  Google Scholar 

  9. Lee, E. W. Magnetostriction and magnetomechanical effects. Rep. Prog. Phys 18, 184–229 (1955).

    Article  ADS  Google Scholar 

  10. Boldrin, D. et al. Giant piezomagnetism in Mn3NiN. ACS Appl. Mater. Interfaces 10, 18863–18868 (2018).

    Article  Google Scholar 

  11. Guo, H. et al. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv. Mater. 32, 2002300 (2020).

    Article  Google Scholar 

  12. Samathrakis, I. & Zhang, H. Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN. Phys. Rev. B 101, 214423 (2020).

    Article  ADS  Google Scholar 

  13. Johnson, F. et al. Strain dependence of Berry-phase-induced anomalous Hall effect in the non-collinear antiferromagnet Mn3NiN. Appl. Phys. Lett. 119, 222401 (2021).

    Article  ADS  Google Scholar 

  14. Radhakrishna, P., Brown, P., Herrmann-Ronzaud, D. & Alben, R. A neutron diffraction investigation of domain formation in a staggered field induced by uniaxial stress in CoF2. J. Phys. C 11, 2851–2859 (1978).

    Article  ADS  Google Scholar 

  15. Baruchel, J. et al. Piezomagnetism and domains in MnF2. J. Phys. Colloq. 49, C8–1895–C8–1896 (1988).

    Article  Google Scholar 

  16. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  Google Scholar 

  17. Jungwirth, T., Marti, X., Wadley, P. & J., W. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  18. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  20. Liu, Z. et al. Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5, 1900176 (2019).

    Article  Google Scholar 

  21. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  ADS  Google Scholar 

  22. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  ADS  Google Scholar 

  23. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article  ADS  Google Scholar 

  24. Tian, D. et al. Manipulating berry curvature of SrRuO3 thin films via epitaxial strain. Proc. Natl Acad. Sci. USA 118, e2101946118 (2021).

    Article  Google Scholar 

  25. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

    Article  ADS  Google Scholar 

  26. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Article  ADS  Google Scholar 

  27. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  ADS  Google Scholar 

  28. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article  ADS  Google Scholar 

  29. Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

    Article  ADS  Google Scholar 

  30. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  31. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  32. Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article  ADS  Google Scholar 

  33. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 12, 73–78 (2018).

    Article  ADS  Google Scholar 

  34. Matsuda, T. et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).

    Article  ADS  Google Scholar 

  35. Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B+C 80, 226–230 (1975).

    Article  ADS  Google Scholar 

  36. Song, Y. et al. Complicated magnetic structure and its strong correlation with the anomalous Hall effect in Mn3Sn. Phys. Rev. B 101, 144422 (2020).

    Article  ADS  Google Scholar 

  37. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  38. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O. & Mackenzie, A. P. Piezoelectric-based apparatus for strain tuning. Rev. Sci. Instrum. 85, 065003 (2014).

    Article  ADS  Google Scholar 

  40. Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  41. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    Article  ADS  Google Scholar 

  42. Cable, J., Wakabayashi, N. & Radhakrishna, P. A neutron study of the magnetic structure of Mn3Sn. Solid State Commun. 88, 161–166 (1993).

    Article  ADS  Google Scholar 

  43. Park, P. et al. Magnetic excitations in non-collinear antiferromagnetic Weyl semimetal Mn3Sn. npj Quantum Mater. 3, 63 (2018).

    Article  ADS  Google Scholar 

  44. Wang, X. et al. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 181, 537–543 (2019).

    Article  ADS  Google Scholar 

  45. Caillat, T., Fleurial, J.-P. & Borshchevsky, A. Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3. J. Cryst. Growth 166, 722–726 (1996).

    Article  ADS  Google Scholar 

  46. Ghosh, S. et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 199–204 (2021).

    Article  Google Scholar 

  47. Ramshaw, B. et al. Avoided valence transition in a plutonium superconductor. Proc. Natl Acad. Sci. USA 112, 3285–3289 (2015).

    Article  ADS  Google Scholar 

  48. Kittaka, S., Taniguchi, H., Yonezawa, S., Yaguchi, H. & Maeno, Y. Higher-Tc superconducting phase in Sr2RuO4 induced by uniaxial pressure. Phys. Rev. B 81, 180510 (2010).

    Article  ADS  Google Scholar 

  49. Coak, M. J. et al. Squidlab–a user-friendly program for background subtraction and fitting of magnetization data. Rev. Sci. Instrum. 91, 023901 (2020).

    Article  ADS  Google Scholar 

  50. Borovik-Romanov, A. Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov. Phys. JETP 11, 786–793 (1960).

    Google Scholar 

  51. Andratski, V. & Borovik-Romanov, A. Piezomagnetic effect in α-Fe2O3. JETP 24, 687–691 (1967).

    ADS  Google Scholar 

  52. Voskanyan, R., Levitin, R. & Shchurov, V. Magnetostriction of a hematite monocrystal in fields up to 150 kOe. Sov. Phys. JETP 27, 423–426 (1968).

    ADS  Google Scholar 

  53. Zvezdin, A. et al. Linear magnetostriction and the antiferromagnetic domain structure in dysprosium orthoferrite. J. Exp. Theor. Phys. 88, 1098–1102 (1985).

    Google Scholar 

  54. Kadomtseva, A., Agafonov, A., Milov, V. & Moskvin, A. Direct observation of a symmetry change induced in orthoferrite crystals by an external magnetic field. JETP Lett. 33, 383–386 (1981).

    ADS  Google Scholar 

Download references

Acknowledgements

The work at the Institute for Quantum Matter, an Energy Frontier Research Center, was funded by the DOE Office of Science, Basic Energy Sciences under award no. DE-SC0019331. This work was partially supported by JST-Mirai Program (JPMJMI20A1), JST-CREST (JPMJCR18T3), JST-PRESTO (JPMJPR20L7), Japan Science and Technology Agency, Grants-in-Aids for Scientific Research on Innovative Areas (15H05882, 15H05883 and 15K21732) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Grants-in-Aid for Scientific Research (19H00650). S.N. acknowledges support from the CIFAR as a Fellow of the CIFAR Quantum Materials Research Program. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, The University of Tokyo, as well as the Cryogenic Research Center, The University of Tokyo, is gratefully acknowledged. M.I. is supported by a JSPS Research Fellowship for Young Scientists (DC1). S.D. is supported by funding from the Max Planck-UBC-UTokyo Center for Quantum Materials, the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program, and the Japan Society for the Promotion of Science KAKENHI grant no. JP19H01808. C.W.H. acknowledges support from the Deutsche Forschungsgemeinschaft through SFB 1143 (project ID 247310070) and the Max Planck Society. The identification of any commercial product or tradename does not imply endorsement or recommendation by the National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Contributions

S.N. and O.T. conceived the project. S.N., B.J.R. and C.W.H. planned and supervised the experiments. M.I. synthesized and prepared the samples. M.I. and T.H. performed the transport measurements under uniaxial strain and the magnetization measurements under uniaxial stress. M.I. performed the finite element simulations. F.T. and B.J.R. conducted the resonant ultrasound spectroscopy measurements. S.K. developed the piston–cylinder-type pressure cell. C.W.H. developed the uniaxial strain cell. S.D. and O.T. developed the Landau theory, and S.D. performed the numerical calculations. M.I., S.D., S.N. and O.T. wrote the manuscript with comments from F.T. and C.W.H. All authors read and commented on the manuscript.

Corresponding author

Correspondence to S. Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Cheng Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

(a) M(H) curves of Sample M2 at T = 300K for various y-axis stress. (b) M(T) curves of Sample M2 under μ0Hy = 1T for various stress along y-axis, taken on cooling from 300 K. (c) M(H) curves of Sample M2 at T = 300K for various stress along x-axis. (d) M(T) curves of Sample M2 under μ0Hx = 1 T for various stress along x-axis, taken on cooling from 300 K. TH ≈ 271 K is the incommensurate transition temperature for Sample M2. ((e, f)) M(H) curves of Sample M1(M3) at T = 300 K for various stress along x(y)-axis.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, discussion and Tables 1 and 2.

Source Data Fig. 2

Field and temperature dependence of magnetization under uniaxial stress.

Source Data Fig. 3

Hall resistivity data for various strains, fields and temperatures.

Source Data Fig. 4

Numerically calculated values of Hall vector for various fields and strain parameters.

Source Data Extended Data Fig. 1

Magnetization data for various stress, fields and temperatures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ikhlas, M., Dasgupta, S., Theuss, F. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022). https://doi.org/10.1038/s41567-022-01645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01645-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing