Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Breakdown of hydrodynamics below four dimensions in a fracton fluid

Abstract

Hydrodynamics is a universal effective theory that describes the thermalization of chaotic many-body systems, and depends only on the symmetries of the underlying theory. Although the Navier–Stokes equations can describe classical liquids and gases, quantum fluids of ultracold atoms or quark–gluon plasma, they cannot yet describe the phases of matter where particle motion is kinematically constrained. Here we present the nonlinear fluctuating hydrodynamics of models with simultaneous charge/mass, dipole/centre of mass and momentum conservation. This hydrodynamic effective theory is unstable below four spatial dimensions: dipole-conserving fluids at rest are unstable to fluctuations, which drive the system to a dynamical universality class with qualitatively distinct features from conventional fluids. In one spatial dimension, our construction is reminiscent of the well-established renormalization group flow of the stochastic Navier–Stokes equations; however, the fixed point we find possesses subdiffusive scaling rather than the superdiffusive scaling of the Kardar–Parisi–Zhang universality class. We numerically simulate many-body classical dynamics in one- and two-dimensional models with dipole and momentum conservation, and find evidence for the predicted breakdown of hydrodynamics. Our theory provides a controlled example of how kinematic constraints lead to a rich landscape of dynamical universality classes in high-dimensional models.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Momentum correlation function.
Fig. 2: Temporal dependence of 1/k* showing anomalous scaling.
Fig. 3: Magnon-like dispersion relation at the DMC fixed point.
Fig. 4: Anomalous scaling in model A in two dimensions.

Data availability

The data used to generate Figs. 1–4 and Supplementary Figs. 1 and 2 are provided in Supplementary Data 2.

Code availability

The code used to run simulations is provided in Supplementary Data 1.

References

  1. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 2nd edn (Butterworth Heinemann, 1987).

  2. Crossley, M., Glorioso, P. & Liu, H. Effective field theory of dissipative fluids. J. High Energy Phys. 2017, 95 (2017).

    MathSciNet  MATH  Article  Google Scholar 

  3. Haehl, F. M., Loganayagam, R. & Rangamani, M. The fluid manifesto: emergent symmetries, hydrodynamics, and black holes. J. High Energy Phys. 2016, 184 (2016).

    MathSciNet  MATH  Article  Google Scholar 

  4. Jensen, K., Pinzani-Fokeeva, N. & Yarom, A. Dissipative hydrodynamics in superspace. J. High Energy Phys. 2018, 127 (2018).

    MathSciNet  MATH  Article  Google Scholar 

  5. Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2010).

    Google Scholar 

  6. Schemmer, M., Bouchoule, I., Doyon, B. & Dubail, J. Generalized hydrodynamics on an atom chip. Phys. Rev. Lett. 122, 090601 (2019).

    ADS  Article  Google Scholar 

  7. Shuryak, E. Physics of strongly coupled quark–gluon plasma. Prog. Part. Nucl. Phys. 62, 48–101 (2009).

    Article  Google Scholar 

  8. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  Google Scholar 

  9. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  Google Scholar 

  10. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

  11. Chamon, C. Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. Phys. Rev. Lett. 94, 040402 (2005).

    ADS  Article  Google Scholar 

  12. Vijay, S., Haah, J. & Fu, L. A new kind of topological quantum order: a dimensional hierarchy of quasiparticles built from stationary excitations. Phys. Rev. B 92, 235136 (2015).

    ADS  Article  Google Scholar 

  13. Vijay, S., Haah, J. & Fu, L. Fracton topological order, generalized lattice gauge theory, and duality. Phys. Rev. B 94, 235157 (2016).

    ADS  Article  Google Scholar 

  14. Pretko, M. Subdimensional particle structure of higher rank U(1) spin liquids. Phys. Rev. B 95, 115139 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  15. Pretko, M. Generalized electromagnetism of subdimensional particles: a spin liquid story. Phys. Rev. B 96, 035119 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  16. Slagle, K. & Kim, Y. B. Fracton topological order from nearest-neighbor two-spin interactions and dualities. Phys. Rev. B 96, 165106 (2017).

    ADS  Article  Google Scholar 

  17. Pretko, M. & Radzihovsky, L. Fracton-elasticity duality. Phys. Rev. Lett. 120, 195301 (2018).

    ADS  Article  Google Scholar 

  18. Seiberg, N. & Shao, S.-H. Exotic U(1) symmetries, duality, and fractons in 3+1-dimensional quantum field theory. SciPost Phys. 9, 046 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  19. Pai, S., Pretko, M. & Nandkishore, R. M. Localization in fractonic random circuits. Phys. Rev. X 9, 021003 (2019).

    Google Scholar 

  20. Sala, P., Rakovszky, T., Verresen, R., Knap, M. & Pollmann, F. Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians. Phys. Rev. X 10, 011047 (2020).

    Google Scholar 

  21. Khemani, V., Hermele, M. & Nandkishore, R. Localization from Hilbert space shattering: from theory to physical realizations. Phys. Rev. B 101, 174204 (2020).

    ADS  Article  Google Scholar 

  22. Gromov, A., Lucas, A. & Nandkishore, R. M. Fracton hydrodynamics. Phys. Rev. Res. 2, 033124 (2020).

    Article  Google Scholar 

  23. Feldmeier, J., Sala, P., De Tomasi, G., Pollmann, F. & Knap, M. Anomalous diffusion in dipole- and higher-moment-conserving systems. Phys. Rev. Lett. 125, 245303 (2020).

    ADS  Article  Google Scholar 

  24. Zhang, P. Subdiffusion in strongly tilted lattice systems. Phys. Rev. Res. 2, 033129 (2020).

    Article  Google Scholar 

  25. Morningstar, A., Khemani, V. & Huse, D. A. Kinetically constrained freezing transition in a dipole-conserving system. Phys. Rev. B 101, 214205 (2020).

    ADS  Article  Google Scholar 

  26. Iaconis, J., Lucas, A. & Nandkishore, R. Multipole conservation laws and subdiffusion in any dimension. Phys. Rev. E 103, 022142 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  27. Ganesan, K. & Lucas, A. Holographic subdiffusion. J. High Energy Phys. 2020, 149 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  28. Guardado-Sanchez, E. et al. Subdiffusion and heat transport in a tilted two-dimensional Fermi-Hubbard system. Phys. Rev. X 10, 011042 (2020).

    Google Scholar 

  29. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    ADS  MATH  Article  Google Scholar 

  30. Spohn, H. Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154, 1191–1227 (2014).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. Delacrétaz, L. V. & Glorioso, P. Breakdown of diffusion on chiral edges. Phys. Rev. Lett. 124, 236802 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  32. De Nardis, J., Bernard, D. & Doyon, B. Hydrodynamic diffusion in integrable systems. Phys. Rev. Lett. 121, 160603 (2018).

    MathSciNet  Article  Google Scholar 

  33. De Nardis, J., Gopalakrishnan, S., Ilievski, E. & Vasseur, R. Superdiffusion from emergent classical solitons in quantum spin chains. Phys. Rev. Lett. 125, 070601 (2020).

    MathSciNet  Article  Google Scholar 

  34. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. Hanai, R. & Littlewood, P. B. Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).

    Article  Google Scholar 

  36. Mazenko, G. F., Ramaswamy, S. & Toner, J. Breakdown of conventional hydrodynamics for smectic-A, hexatic-B, and cholesteric liquid crystals. Phys. Rev. A 28, 1618–1636 (1983).

    ADS  Article  Google Scholar 

  37. Simon, S. H. In Composite Fermions (ed. Heinonen, O.) 91–194 (World Scientific, 1998).

  38. Gromov, A. Towards classification of fracton phases: the multipole algebra. Phys. Rev. X 9, 031035 (2019).

    Google Scholar 

  39. Bhattacharyya, S., Rodriguez-Nieva, J. F. & Demler, E. Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett. 125, 230601 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  40. Rodriguez-Nieva, J. F., Orioli, A. P. & Marino, J. Universal prethermal dynamics and self-similar relaxation in the two-dimensional Heisenberg model. Preprint at https://arxiv.org/abs/2106.00023 (2021).

  41. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    ADS  Article  Google Scholar 

  42. Glorioso, P., Delacrétaz, L., Chen, X., Nandkishore, R. & Lucas, A. Hydrodynamics in lattice models with continuous non-Abelian symmetries. SciPost Phys. 10, 015 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  43. Grosvenor, K. T., Hoyos, C., Peña-Benitez, F. & Surówka, P. Hydrodynamics of ideal fracton fluids. Phys. Rev. Res. 3, 043186 (2021).

    Article  Google Scholar 

  44. Lepri, S., Livi, R. & Politi, A. Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997).

    ADS  Article  Google Scholar 

  45. Lee-Dadswell, G. R., Turner, E., Ettinger, J. & Moy, M. Momentum conserving one-dimensional system with a finite thermal conductivity. Phys. Rev. E 82, 061118 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  46. Das, S. G., Dhar, A., Saito, K., Mendl, C. B. & Spohn, H. Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain. Phys. Rev. E 90, 012124 (2014).

    ADS  Article  Google Scholar 

  47. Slagle, K., Prem, A. & Pretko, M. Symmetric tensor gauge theories on curved spaces. Ann. Phys. 410, 167910 (2019).

    MathSciNet  MATH  Article  Google Scholar 

  48. Seiberg, N. & Shao, S.-H. Exotic symmetries, duality, and fractons in 2+1-dimensional quantum field theory. SciPost Phys. 10, 027 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  49. Dua, A., Sarkar, P., Williamson, D. J. & Cheng, M. Bifurcating entanglement-renormalization group flows of fracton stabilizer models. Phys. Rev. Res. 2, 033021 (2020).

    Article  Google Scholar 

  50. Iaconis, J., Vijay, S. & Nandkishore, R. Anomalous subdiffusion from subsystem symmetries. Phys. Rev. B 100, 214301 (2019).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with L. Delacrétaz, B. Halperin, X. Huang, K. Jensen, R. Nandkishore, L. Radzihovsky and D. T. Son. This work was supported by the Department of Energy through award DE-SC0019380 (P.G.), the Simons Foundation through award no. 620869 (P.G.), the National Science Foundation under CAREER Award DMR-2145544 (A.L.), the Gordon and Betty Moore Foundation’s EPiQS Initiative via grants GBMF4302 and GBMF8686 (J.F.R.-N.) and GBMF10279 (J.G. and A.L.), and by Research Fellowships from the Alfred P. Sloan Foundation under grant FG-2020-13615 (P.G.) and FG-2020-13795 (A.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.G. and A.L. developed the theoretical framework and classical models. J.F.R.-N. and J.G. performed the numerical simulations and statistical analysis of the data, and prepared the figures. P.G. and A.L. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Paolo Glorioso or Andrew Lucas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Sections 1–7.

Supplementary Data 1

MATLAB codes used to run the simulations and generate the data for models A and B.

Supplementary Data 2

Raw data used to generate Figs. 1–4 and Supplementary Figs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glorioso, P., Guo, J., Rodriguez-Nieva, J.F. et al. Breakdown of hydrodynamics below four dimensions in a fracton fluid. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-022-01631-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing