Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

Abstract

Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of the tokamak geometry.
Fig. 2: Improved thermal ion confinement in fusion plasmas with MeV ions and unstable TAEs.
Fig. 3: Thermal ion transport suppression in plasmas with MeV ions and fast-ion-driven modes.
Fig. 4: Evidence for the nonlinear generation of zonal structures.

Similar content being viewed by others

Data availability

The JET experimental data are stored in the Processed Pulse File system, which is a centralized data storage and retrieval system for data derived from raw measurements within the JET torus, and from other sources such as simulation programs. These data are fully available for EUROfusion Consortium members and can be accessed by non-members under request to EUROfusion. Numerical data that support the outcome of this study are available from the corresponding authors upon reasonable request.

Code availability

The research codes cited in the paper require prior detailed knowledge of the implemented physics models and are under continuous development. The corresponding authors can be contacted for any further information.

References

  1. Ongena, J., Koch, R., Wolf, R. & Zohm, H. Magnetic-confinement fusion. Nat. Phys. 12, 398–410 (2016).

    Article  Google Scholar 

  2. Litaudon, X. et al. Overview of the JET results in support to ITER. Nucl. Fusion 57, 102001 (2017).

    Article  ADS  Google Scholar 

  3. Shimada, M. et al. Chapter 1: overview and summary. Nucl. Fusion 47, S1–S17 (2007).

    Article  Google Scholar 

  4. Doyle, E. J. et al. Chapter 2: plasma confinement and transport. Nucl. Fusion 47, S18–S127 (2007).

    Article  Google Scholar 

  5. Romanelli, F. Ion temperature-gradient-driven modes and anomalous ion transport in tokamaks. Phys. Fluids B 1, 1018–1025 (1989).

    Article  ADS  Google Scholar 

  6. Citrin, J. et al. Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111, 155001 (2013).

    Article  ADS  Google Scholar 

  7. Garcia, J. et al. Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).

    Article  ADS  Google Scholar 

  8. Di Siena, A., Görler, T., Doerk, H., Poli, E. & Bilato, R. Fast-ion stabilization of tokamak plasma turbulence. Nucl. Fusion 58, 054002 (2018).

    Article  ADS  Google Scholar 

  9. Di Siena, A. et al. Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59, 124001 (2019).

    Article  ADS  Google Scholar 

  10. Fasoli, A. et al. Chapter 5: physics of energetic ions. Nucl. Fusion 47, S264–S284 (2007).

    Article  Google Scholar 

  11. Gorelenkov, N., Pinches, S. D. & Toi, K. Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54, 125001 (2014).

    Article  ADS  Google Scholar 

  12. Todo, Y. Introduction to the interaction between energetic particles and Alfvén eigenmodes in toroidal plasmas. Rev. Mod. Plasma Phys. 3, 1 (2019).

    Article  ADS  Google Scholar 

  13. Heidbrink, W. W. & White, R. B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27, 030901 (2020).

    Article  ADS  Google Scholar 

  14. Zarzoso, D. et al. Impact of energetic-particle-driven geodesic acoustic modes on turbulence. Phys. Rev. Lett. 110, 125002 (2013).

    Article  ADS  Google Scholar 

  15. Cheng, C. Z. & Chance, M. S. Low-n shear Alfvén spectra in axisymmetric toroidal plasmas. Phys. Fluids 29, 3695–3701 (1986).

    Article  ADS  MATH  Google Scholar 

  16. Fu, G. Y. & Van Dam, J. W. Excitation of the toroidicity-induced shear Alfvén eigenmode by fusion alpha particles in an ignited tokamak. Phys. Fluids B 1, 1949–1952 (1989).

    Article  ADS  Google Scholar 

  17. Pinches, S. D. et al. Energetic ions in ITER plasmas. Phys. Plasmas 22, 021807 (2015).

    Article  ADS  Google Scholar 

  18. Diamond, P. H., Itoh, S. I., Itoh, K. & Hahm, T. S. Zonal flows in plasmas – a review. Plasma Phys. Control. Fusion 47, R35–R161 (2005).

    Article  Google Scholar 

  19. Heimpel, M., Aurnou, J. & Wicht, J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005).

    Article  ADS  Google Scholar 

  20. Todo, Y., Berk, H. L. & Breizman, B. N. Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation. Nucl. Fusion 50, 084016 (2010).

    Article  ADS  Google Scholar 

  21. Qiu, Z., Chen, L. & Zonca, F. Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode. Phys. Plasmas 23, 090702 (2016).

    Article  ADS  Google Scholar 

  22. Chen, L. & Zonca, F. Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 015008 (2016).

    Article  ADS  Google Scholar 

  23. Breizman, B. N. & Sharapov, S. E. Major minority: energetic particles in fusion plasmas. Plasma Phys. Control. Fusion 53, 054001 (2011).

    Article  ADS  Google Scholar 

  24. Heidbrink, W. W. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008).

    Article  ADS  Google Scholar 

  25. Kazakov, Y. O. et al. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nat. Phys. 13, 973–978 (2017).

    Article  Google Scholar 

  26. Ongena, J. et al. Synergetic heating of D-NBI ions in the vicinity of the mode conversion layer in H–D plasmas in JET with the ITER like wall. EPJ Web Conf. 157, 02006 (2017).

    Article  Google Scholar 

  27. Nocente, M. et al. Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D–3He plasmas with the 3-ion radio-frequency heating scenario. Nucl. Fusion 60, 124006 (2020).

    Article  ADS  Google Scholar 

  28. Kazakov, Y. O. et al. Physics and applications of three-ion ICRF scenarios for fusion research. Phys. Plasmas 28, 020501 (2021).

    Article  Google Scholar 

  29. Hawryluk, R. J. in Physics of Plasmas Close to Thermonuclear Conditions Vol. 1 (eds Coppi B. et al.) 19–46 (Pergamon Press, 1981).

  30. Ongena, J., Voitsekhovitch, I., Evrard, M. & McCune, D. Numerical transport codes. Fusion Sci. Technol. 61, 180–189 (2012).

    Article  Google Scholar 

  31. Artaud, J. F. et al. The CRONOS suite of codes for integrated tokamak modelling. Nucl. Fusion 50, 043001 (2010).

    Article  ADS  Google Scholar 

  32. Garcia, J., Görler, T. & Jenko, F. Isotope and fast ions turbulence suppression effects: consequences for high-β ITER plasmas. Phys. Plasmas 25, 055902 (2018).

    Article  ADS  Google Scholar 

  33. Campbell, D. J. et al. Stabilization of sawteeth with additional heating in the JET tokamak. Phys. Rev. Lett. 60, 2148–2151 (1988).

    Article  ADS  Google Scholar 

  34. Graves, J. P. et al. Experimental verification of sawtooth control by energetic particles in ion cyclotron resonance heated JET tokamak plasmas. Nucl. Fusion 50, 052002 (2010).

    Article  ADS  Google Scholar 

  35. Gates, D. A., Gorelenkov, N. N. & White, R. B. Ion heating by fast-particle-induced Alfvén turbulence. Phys. Rev. Lett. 87, 205003 (2001).

    Article  ADS  Google Scholar 

  36. Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904–1910 (2000).

    Article  ADS  Google Scholar 

  37. Citrin, J. et al. Electromagnetic stabilization of tokamak microturbulence in a high-β regime. Plasma Phys. Control. Fusion 57, 014032 (2014).

    Article  ADS  Google Scholar 

  38. Görler, T. et al. On the validation of gyrokinetic L-mode simulations. Fusion Sci. Technol. 69, 537–545 (2016).

    Article  Google Scholar 

  39. Mazzi, S. et al. Impact of fast ions on a trapped-electron-mode dominated plasma in a JT-60U hybrid scenario. Nucl. Fusion 60, 046026 (2020).

    Article  ADS  Google Scholar 

  40. Gorelenkov, N. N. et al. Anomalous electron transport due to multiple high frequency beam ion driven Alfvén eigenmodes. Nucl. Fusion 50, 084012 (2010).

    Article  ADS  Google Scholar 

  41. Crocker, N. A. et al. Three-wave interactions between fast-ion modes in the national spherical torus experiment. Phys. Rev. Lett. 97, 045002 (2006).

    Article  ADS  Google Scholar 

  42. Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).

    Article  ADS  Google Scholar 

  43. Stix, T. H. Heating of toroidal plasmas by neutral injection. Plasma Phys. 14, 367–384 (1972).

    Article  ADS  Google Scholar 

  44. Brizard, A. J. & Hahm, T. S. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Merz, F. Gyrokinetic Simulation of Multimode Plasma Turbulence. PhD thesis, Univ. Münster (2008).

  46. Görler, T. Multiscale Effects in Plasma Microturbulence. PhD thesis, Univ. Ulm (2009).

  47. Pankin, A., McCune, D., Andre, R., Bateman, G. & Kritz, A. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library. Comp. Phys. Commun. 159, 157–184 (2004).

    Article  ADS  Google Scholar 

  48. Brambilla, M. Numerical simulation of ion cyclotron waves in tokamak plasmas. Plasma Phys. Control. Fusion 41, 1–34 (1999).

    Article  ADS  Google Scholar 

  49. Grierson, B. A. et al. Orchestrating TRANSP simulations for interpretative and predictive tokamak modeling with OMFIT. Fusion Sci. Technol. 74, 101–115 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Baruzzo and F. Nave for the preparation and execution of JET experiments discussed in this paper; E. de la Luna for support in detailing the experimental diagnostics of JET; A. Ho for assistance in processing the experimental data; T. Görler for providing essential advice to ensure the correct numerical setup for the GENE modelling reported in this paper; Y. Camenen, X. Garbet and A. Bierwage for fruitful discussions about the gyrokinetic analyses; G. Giruzzi for valuable suggestions on the article strategy. The simulations were performed on the IRENE Joliot-Curie HPC system, in the framework of the PRACE projects IONFAST and AFIETC, led by J. Garcia, and on the CINECA Marconi HPC within the project GENE4EP, led by D. Zarzoso. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement no. 633053. The views and opinions express herein do not necessarily reflect those of the European Commission. Part of the work by Ye. O. Kazakov and J.Ongena was also carried out in the framework of projects done for the ITER Scientist Fellow Network (ISFN).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The reported JET experiments were designed and coordinated by Ye. O. Kazakov, M. Nocente, J. Garcia and J. Ongena; S. Mazzi, J. Garcia, D. Zarzoso and S. Benkadda performed gyrokinetic modelling and subsequent analysis, including additional simulations requested by the reviewers. Input data for gyrokinetic modelling were provided by Ž. Štancar, G. Szepesi and M. Dreval. Ž. Štancar performed TRANSP modelling. J. Garcia performed power balance analysis and CRONOS simulations. M. Dreval provided analysis of the TAE radial location and the correlation reflectometer data. The bispectral analyses were performed by S. Mazzi and D. Zarzoso, J. Eriksson and A. Sahlberg provided neutron measurements data from TOFOR. The original manuscript was written by S. Mazzi, J. Garcia, D. Zarzoso, Ye. O. Kazakov and J. Ongena with feedback from all the authors. Major revisions of this manuscript were undertaken by Ye. O. Kazakov, J. Ongena, J. Garcia and S. Mazzi.

Corresponding authors

Correspondence to S. Mazzi or J. Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Neal Crocker, Chris Holland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–7 with accompanying text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzi, S., Garcia, J., Zarzoso, D. et al. Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nat. Phys. 18, 776–782 (2022). https://doi.org/10.1038/s41567-022-01626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01626-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing