Abstract
Antiferromagnetic insulators offer strategic advantages in spintronic applications because of their negligible stray fields and ultrafast magnetic dynamics. Control of their magnetization and readout of their magnetic state are essential for these applications but remain challenging. Here we report the electrical detection of room-temperature magnetization switching in the canted antiferromagnetic insulator LaFeO3, capped with a Pt or W overlayer. The observation of a large magneto-thermovoltage with an in-plane temperature gradient suggests that the mechanism is the swapping of spin currents in the antiferromagnet. This effect provides a sensitive electrical probe of the tiny net magnetization in the insulator, which can be manipulated by a magnetic field on the order of 10 mT. Our results highlight a new material class of insulating canted antiferromagnets for spintronics and spin caloritronics and suggests a method for the electrical readout of magnetic signals in an antiferromagnetic insulator.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are available. Additional data supporting the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.
References
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).
Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
Pugh, E. M. & Rostoker, N. Hall effect in ferromagnetic materials. Rev. Mod. Phys. 25, 151–157 (1953).
Smith, A. W. The Hall effect and the Nernst effect in magnetic alloys. Phys. Rev. 17, 23–37 (1921).
Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).
Uchida, K. et al. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946–1973 (2016).
Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).
Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).
Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).
Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 227203 (2019).
Churikova, A. et al. Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers. Appl. Phys. Lett. 116, 022410 (2020).
Meier, D. et al. Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO. Nat. Commun. 6, 8211 (2015).
Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).
Yu, H., Brechet, S. D. & Ansermet, J.-P. Spin caloritronics, origin and outlook. Phys. Lett. A 381, 825–837 (2017).
Koehler, W. C. & Wollan, E. O. Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J. Phys. Chem. Solids 2, 100–106 (1957).
Treves, D. Magnetic studies of some orthoferrites. Phys. Rev. 125, 1843–1853 (1962).
White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare‐earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969).
Treves, D. Studies on orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033–1039 (1965).
Reich, S., Shtrikman, S. & Treves, D. Angular variation of coercivity in orthoferrite single crystals. J. Appl. Phys. 36, 140–141 (1965).
Zhou, J. S., Marshall, L. G., Li, Z. Y., Li, X. & He, J. M. Weak ferromagnetism in perovskite oxides. Phys. Rev. B 102, 104420 (2020).
Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).
Kikkawa, T. et al. Longitudinal spin Seebeck effect free from the proximity Nernst effect. Phys. Rev. Lett. 110, 067207 (2013).
Tikhonov, K. S., Sinova, J. & Finkel’stein, A. M. Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect. Nat. Commun. 4, 1945 (2013).
Shiomi, Y. et al. Spin Seebeck effect in the polar antiferromagnet Cu2V2O7. Phys. Rev. B 96, 180414 (2017).
Hoogeboom, G. R. et al. Magnetic order of Dy3+ and Fe3+ moments in antiferromagnetic DyFeO3 probed by spin Hall magnetoresistance and spin Seebeck effect. Phys. Rev. B 103, 134406 (2021).
Manchon, A., Ndiaye, P. B., Moon, J.-H., Lee, H.-W. & Lee, K.-J. Magnon-mediated Dzyaloshinskii–Moriya torque in homogeneous ferromagnets. Phys. Rev. B 90, 224403 (2014).
Pauyac, C. O., Chshiev, M., Manchon, A. & Nikolaev, S. A. Spin Hall and spin swapping torques in diffusive ferromagnets. Phys. Rev. Lett. 120, 176802 (2018).
Saidaoui, H. B. M. & Manchon, A. Spin-swapping transport and torques in ultrathin magnetic bilayers. Phys. Rev. Lett. 117, 036601 (2016).
Mao, A. J., Tian, H., Kuang, X. Y., Jia, J. W. & Chai, J. S. Structural phase transition and spin reorientation of LaFeO3 films under epitaxial strain. RSC Adv. 6, 100526–100531 (2016).
Kovalev, A. A. & Zyuzin, V. Spin torque and Nernst effects in Dzyaloshinskii–Moriya ferromagnets. Phys. Rev. B 93, 161106 (2016).
Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).
Hallsteinsen, I. et al. Magnetic domain configuration of (111)-oriented LaFeO3 epitaxial thin films. APL Mater. 5, 086107 (2017).
Avci, C. O. et al. Nonlocal detection of out-of-plane magnetization in a magnetic insulator by thermal spin drag. Phys. Rev. Lett. 124, 027701 (2020).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016).
Weingart, C., Spaldin, N. & Bousquet, E. Noncollinear magnetism and single-ion anisotropy in multiferroic perovskites. Phys. Rev. B 86, 094413 (2012).
Bousquet, E. & Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 28, 123001 (2016).
Acknowledgements
We acknowledge support from US National Science Foundation DMREF grants DMR-1729555, DMR-1729588 and DMR-1949701. G.A.F. acknowledges additional funding from DMR-2114825. The work of M.M., B.B. and A.B. was supported by US Department of Energy, Office of Science, Basic Energy Sciences grant no. DE-SC0019275 and benefitted from Northeastern University’s Advanced Scientific Computation Center and the National Energy Research Scientific Computing Center through Department of Energy grant no. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a Department of Energy Office of Science User Facility operated by Argonne National Laboratory under contract no. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Contributions
J.Z., W.L., G.A.F. and C.L.C. conceived the research plan. J.M.H. and J.Z. grew the LaFeO3 crystals, performed crystal characterizations, and oriented and polished the crystal pellets. W.L. and J.X. fabricated the devices and performed the magneto-thermovoltage measurements. B.M. and G.A.F. carried out the modelling and theoretical work. M.M., B.B. and A.B. performed the density functional theory calculations. J.F., Y.C. and D.H. performed the X-ray magnetic circular dichroism measurements. All co-authors contributed to the data analysis and writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Günter Reiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10. Tables 1–5, discussion and references.
Supplementary Data
Source data for supplementary figures.
Source data
Source Data Fig. 1
Source data for the graphs displayed in Figure 1.
Source Data Fig. 2
Source data for the graphs displayed in Figure 2.
Source Data Fig. 3
Source data for the graphs displayed in Figure 3.
Rights and permissions
About this article
Cite this article
Lin, W., He, J., Ma, B. et al. Evidence for spin swapping in an antiferromagnet. Nat. Phys. 18, 800–805 (2022). https://doi.org/10.1038/s41567-022-01608-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-022-01608-w
This article is cited by
-
Acoustic spin rotation in heavy-metal-ferromagnet bilayers
Nature Communications (2024)
-
Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity
Nature Materials (2024)
-
Generation of out-of-plane polarized spin current by spin swapping
Nature Communications (2023)
-
The role of spin in thermoelectricity
Nature Reviews Physics (2023)