Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for spin swapping in an antiferromagnet

Abstract

Antiferromagnetic insulators offer strategic advantages in spintronic applications because of their negligible stray fields and ultrafast magnetic dynamics. Control of their magnetization and readout of their magnetic state are essential for these applications but remain challenging. Here we report the electrical detection of room-temperature magnetization switching in the canted antiferromagnetic insulator LaFeO3, capped with a Pt or W overlayer. The observation of a large magneto-thermovoltage with an in-plane temperature gradient suggests that the mechanism is the swapping of spin currents in the antiferromagnet. This effect provides a sensitive electrical probe of the tiny net magnetization in the insulator, which can be manipulated by a magnetic field on the order of 10 mT. Our results highlight a new material class of insulating canted antiferromagnets for spintronics and spin caloritronics and suggests a method for the electrical readout of magnetic signals in an antiferromagnetic insulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin structure and magnetization switching of a LaFeO3 crystal.
Fig. 2: Magneto-thermovoltage measurements on LaFeO3/Pt with an out-of-plane temperature gradient.
Fig. 3: Magneto-thermovoltage measurements on the c-axis oriented LaFeO3/Pt with an in-plane temperature gradient.
Fig. 4: Schematic of the spin swapping mechanism at the interface of a c-axis oriented LaFeO3 crystal and a heavy metal.

Similar content being viewed by others

Data availability

Source data are available. Additional data supporting the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article  Google Scholar 

  2. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  5. McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  ADS  Google Scholar 

  6. Pugh, E. M. & Rostoker, N. Hall effect in ferromagnetic materials. Rev. Mod. Phys. 25, 151–157 (1953).

    Article  ADS  Google Scholar 

  7. Smith, A. W. The Hall effect and the Nernst effect in magnetic alloys. Phys. Rev. 17, 23–37 (1921).

    Article  ADS  Google Scholar 

  8. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  ADS  Google Scholar 

  9. Uchida, K. et al. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946–1973 (2016).

    Article  Google Scholar 

  10. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    Article  ADS  Google Scholar 

  11. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  ADS  Google Scholar 

  12. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  13. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  14. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article  ADS  Google Scholar 

  15. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  ADS  Google Scholar 

  16. Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 227203 (2019).

    Article  ADS  Google Scholar 

  17. Churikova, A. et al. Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers. Appl. Phys. Lett. 116, 022410 (2020).

    Article  ADS  Google Scholar 

  18. Meier, D. et al. Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO. Nat. Commun. 6, 8211 (2015).

    Article  ADS  Google Scholar 

  19. Lifshits, M. B. & Dyakonov, M. I. Swapping spin currents: interchanging spin and flow directions. Phys. Rev. Lett. 103, 186601 (2009).

    Article  ADS  Google Scholar 

  20. Yu, H., Brechet, S. D. & Ansermet, J.-P. Spin caloritronics, origin and outlook. Phys. Lett. A 381, 825–837 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Koehler, W. C. & Wollan, E. O. Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J. Phys. Chem. Solids 2, 100–106 (1957).

    Article  ADS  Google Scholar 

  22. Treves, D. Magnetic studies of some orthoferrites. Phys. Rev. 125, 1843–1853 (1962).

    Article  ADS  Google Scholar 

  23. White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare‐earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969).

    Article  ADS  Google Scholar 

  24. Treves, D. Studies on orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033–1039 (1965).

    Article  ADS  Google Scholar 

  25. Reich, S., Shtrikman, S. & Treves, D. Angular variation of coercivity in orthoferrite single crystals. J. Appl. Phys. 36, 140–141 (1965).

    Article  ADS  Google Scholar 

  26. Zhou, J. S., Marshall, L. G., Li, Z. Y., Li, X. & He, J. M. Weak ferromagnetism in perovskite oxides. Phys. Rev. B 102, 104420 (2020).

    Article  ADS  Google Scholar 

  27. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  28. Kikkawa, T. et al. Longitudinal spin Seebeck effect free from the proximity Nernst effect. Phys. Rev. Lett. 110, 067207 (2013).

    Article  ADS  Google Scholar 

  29. Tikhonov, K. S., Sinova, J. & Finkel’stein, A. M. Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect. Nat. Commun. 4, 1945 (2013).

    Article  ADS  Google Scholar 

  30. Shiomi, Y. et al. Spin Seebeck effect in the polar antiferromagnet Cu2V2O7. Phys. Rev. B 96, 180414 (2017).

    Article  ADS  Google Scholar 

  31. Hoogeboom, G. R. et al. Magnetic order of Dy3+ and Fe3+ moments in antiferromagnetic DyFeO3 probed by spin Hall magnetoresistance and spin Seebeck effect. Phys. Rev. B 103, 134406 (2021).

    Article  ADS  Google Scholar 

  32. Manchon, A., Ndiaye, P. B., Moon, J.-H., Lee, H.-W. & Lee, K.-J. Magnon-mediated Dzyaloshinskii–Moriya torque in homogeneous ferromagnets. Phys. Rev. B 90, 224403 (2014).

    Article  ADS  Google Scholar 

  33. Pauyac, C. O., Chshiev, M., Manchon, A. & Nikolaev, S. A. Spin Hall and spin swapping torques in diffusive ferromagnets. Phys. Rev. Lett. 120, 176802 (2018).

    Article  ADS  Google Scholar 

  34. Saidaoui, H. B. M. & Manchon, A. Spin-swapping transport and torques in ultrathin magnetic bilayers. Phys. Rev. Lett. 117, 036601 (2016).

    Article  ADS  Google Scholar 

  35. Mao, A. J., Tian, H., Kuang, X. Y., Jia, J. W. & Chai, J. S. Structural phase transition and spin reorientation of LaFeO3 films under epitaxial strain. RSC Adv. 6, 100526–100531 (2016).

    Article  ADS  Google Scholar 

  36. Kovalev, A. A. & Zyuzin, V. Spin torque and Nernst effects in Dzyaloshinskii–Moriya ferromagnets. Phys. Rev. B 93, 161106 (2016).

    Article  ADS  Google Scholar 

  37. Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    Article  ADS  Google Scholar 

  38. Hallsteinsen, I. et al. Magnetic domain configuration of (111)-oriented LaFeO3 epitaxial thin films. APL Mater. 5, 086107 (2017).

    Article  ADS  Google Scholar 

  39. Avci, C. O. et al. Nonlocal detection of out-of-plane magnetization in a magnetic insulator by thermal spin drag. Phys. Rev. Lett. 124, 027701 (2020).

    Article  ADS  Google Scholar 

  40. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  ADS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  45. Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016).

    Article  ADS  Google Scholar 

  46. Weingart, C., Spaldin, N. & Bousquet, E. Noncollinear magnetism and single-ion anisotropy in multiferroic perovskites. Phys. Rev. B 86, 094413 (2012).

    Article  ADS  Google Scholar 

  47. Bousquet, E. & Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 28, 123001 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from US National Science Foundation DMREF grants DMR-1729555, DMR-1729588 and DMR-1949701. G.A.F. acknowledges additional funding from DMR-2114825. The work of M.M., B.B. and A.B. was supported by US Department of Energy, Office of Science, Basic Energy Sciences grant no. DE-SC0019275 and benefitted from Northeastern University’s Advanced Scientific Computation Center and the National Energy Research Scientific Computing Center through Department of Energy grant no. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a Department of Energy Office of Science User Facility operated by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., W.L., G.A.F. and C.L.C. conceived the research plan. J.M.H. and J.Z. grew the LaFeO3 crystals, performed crystal characterizations, and oriented and polished the crystal pellets. W.L. and J.X. fabricated the devices and performed the magneto-thermovoltage measurements. B.M. and G.A.F. carried out the modelling and theoretical work. M.M., B.B. and A.B. performed the density functional theory calculations. J.F., Y.C. and D.H. performed the X-ray magnetic circular dichroism measurements. All co-authors contributed to the data analysis and writing of the manuscript.

Corresponding authors

Correspondence to Gregory A. Fiete, Jianshi Zhou or C. L. Chien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Günter Reiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10. Tables 1–5, discussion and references.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 1

Source data for the graphs displayed in Figure 1.

Source Data Fig. 2

Source data for the graphs displayed in Figure 2.

Source Data Fig. 3

Source data for the graphs displayed in Figure 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., He, J., Ma, B. et al. Evidence for spin swapping in an antiferromagnet. Nat. Phys. 18, 800–805 (2022). https://doi.org/10.1038/s41567-022-01608-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01608-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing