Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-excitation anisotropy in the nematic state of detwinned FeSe

Abstract

The origin of the electronic nematicity in FeSe is one of the most important unresolved puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at Q1 = (1, 0) and Q2 = (0, 1) of twin-free FeSe are expected to provide decisive criteria for clarifying this issue. Although a spin-fluctuation anisotropy below 10 meV between Q1 and Q2 has been observed by inelastic neutron scattering at low temperature, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition Ts. Here we use resonant inelastic X-ray scattering to probe the high-energy magnetic excitations of detwinned FeSe. A prominent anisotropy between the magnetic excitations along the H and K directions is found to persist to E ≈ 200 meV, which decreases gradually with increasing temperature and finally vanishes at a temperature around Ts. The measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective.Taking together the large energy scale far beyond the dxz/dyz orbital splitting, we suggest that the nematicity in FeSe is probably spin-driven.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure, detwinning strategy, scattering geometry and incident energy-dependent RIXS.
Fig. 2: Summary of RIXS results on detwinned FeSe and BaFe2As2.
Fig. 3: Energy dispersions and damping factors for the magnetic excitations of FeSe and BaFe2As2.
Fig. 4: Anisotropic magnetic excitations in detwinned FeSe and BaFe2As2.
Fig. 5: Calculated spin excitation spectra of the AFQ phase and their comparison with the fitting curve of the experimental S(q) from RIXS.

Similar content being viewed by others

Data availability

All data that support the plots in this paper are available from the corresponding author upon reasonable request. Source data are provided with this paper. The data can also be found at Figshare public repository65.

Code availability

All relevant source code is available from the corresponding author upon reasonable request.

References

  1. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  Google Scholar 

  2. Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  ADS  Google Scholar 

  3. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned \Ba(Fe1 − xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  ADS  Google Scholar 

  4. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  5. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article  Google Scholar 

  6. Si, Q., Yu, R. & Abrahams, E. High temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    Article  ADS  Google Scholar 

  7. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Böhmer, A. E. & Meingast, C. Electronic nematic susceptibility of iron-based superconductors. C. R. Phys. 17, 90–112 (2016).

    Article  ADS  Google Scholar 

  9. Böhmer, A. E. & Kreisel, A. Nematicity, magnetism and superconductivity in FeSe. J. Phys. Condens. Matter 30, 023001 (2018).

    Article  ADS  Google Scholar 

  10. Metlitski, M. A. et al. Cooper pairing in non-Fermi liquids. Phys. Rev. B 91, 115111 (2015).

    Article  ADS  Google Scholar 

  11. Lederer, S. et al. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).

    Article  ADS  Google Scholar 

  12. Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020).

    Article  Google Scholar 

  13. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  ADS  Google Scholar 

  14. McQueen, T. M. et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103, 057002 (2009).

    Article  ADS  Google Scholar 

  15. Tanatar, M. A. et al. Origin of resistivity anisotropy in the nematic phase of FeSe. Phys. Rev. Lett. 117, 127001 (2016).

    Article  ADS  Google Scholar 

  16. Coldea, A. & Watson, M. D. The key ingredients of the electronic structure of FeSe. Annu. Rev. Condens. Matter Phys. 9, 125–146 (2018).

    Article  ADS  Google Scholar 

  17. Liu, D. F. et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).

    Google Scholar 

  18. Hashimoto, T. et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 9, 282 (2018).

    Article  ADS  Google Scholar 

  19. Rhodes, L. C. et al. Scaling of the superconducting gap with orbital character in FeSe. Phys. Rev. B 98, 180503(R) (2018).

    Article  ADS  Google Scholar 

  20. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

    Article  ADS  Google Scholar 

  21. Lee, C. C., Yin, W.-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Article  ADS  Google Scholar 

  22. Yi, M. et al. The nematic energy scale and the missing electron pocket in FeSe. Phys. Rev. X 9, 041049 (2019).

    Google Scholar 

  23. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

    Article  ADS  Google Scholar 

  24. Böhmer, A. E. et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity. Phys. Rev. Lett. 114, 027001 (2015).

    Article  ADS  Google Scholar 

  25. Yamakawa, Y., Onari, S. & Kontani, H. Nematicity and magnetism in FeSe and other families of Fe-based superconductors. Phys. Rev. X 6, 021032 (2016).

    Google Scholar 

  26. Onari, S., Yamakawa, Y. & Kontani, H. Sign-reversing orbital polarization in the nematic phase of FeSe due to the C2 symmetry breaking in the self-energy. Phys. Rev. Lett. 116, 227001 (2016).

    Article  ADS  Google Scholar 

  27. Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15, 159–163 (2016).

    Article  ADS  Google Scholar 

  28. Wang, Q. et al. Magnetic ground state of FeSe. Nat. Commun. 7, 12182 (2016).

    Article  ADS  Google Scholar 

  29. Ma, M. W. et al. Prominent role of spin-orbit coupling in FeSe revealed by inelastic neutron scattering. Phys. Rev. X 7, 021025 (2017).

    Google Scholar 

  30. Wang, F., Kivelson, S. & Lee, D.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

    Article  Google Scholar 

  31. Yu, R. & Si, Q. Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe. Phys. Rev. Lett. 115, 116401 (2015).

    Article  ADS  Google Scholar 

  32. Glasbrenner, J. K. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

    Article  Google Scholar 

  33. She, J.-H., Lawler, M. J. & Kim, E.-A. Quantum spin liquid intertwining nematic and superconducting order in FeSe. Phys. Rev. Lett. 121, 237002 (2018).

    Article  ADS  Google Scholar 

  34. Lu, X. et al. Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2 − xNixAs2. Science 345, 657–660 (2014).

    Article  ADS  Google Scholar 

  35. Chen, T. et al. Anisotropic spin fluctuations in detwinned FeSe. Nat. Mater. 18, 709–716 (2019).

    Article  ADS  Google Scholar 

  36. Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, gap anisotropy and spin resonance excitations in a multiorbital t-J1-J2 model for iron pnictides. Phys. Rev. B 89, 024509 (2014).

    Article  ADS  Google Scholar 

  37. Fanfarillo, L. et al. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).

    Article  ADS  Google Scholar 

  38. Tian, L. et al. Spin fluctuation anisotropy as a probe of orbital-selective hole-electron quasiparticle excitations in detwinned Ba(Fe1 − xCox)2As2. Phys. Rev. B 100, 134509 (2019).

    Article  ADS  Google Scholar 

  39. Zhou, K. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).

    Article  ADS  Google Scholar 

  40. Pelliciari, J. et al. Local and collective magnetism of EuFe2As2. Phys. Rev. B 95, 115152 (2017).

    Article  ADS  Google Scholar 

  41. Garcia, F. A. et al. Anisotropic magnetic excitations and incipient Néel order in Ba(Fe1 − xMnx)2As2. Phys. Rev. B 99, 115118 (2019).

    Article  ADS  Google Scholar 

  42. Pelliciari, J. et al. Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe2(As1 − xPx)2. Commun. Phys. 2, 139 (2019).

    Article  Google Scholar 

  43. Rahn, M. C. et al. Paramagnon dispersion in β-FeSe observed by Fe L-edge resonant inelastic X-ray scattering. Phys. Rev. B 99, 014505 (2019).

    Article  ADS  Google Scholar 

  44. Pelliciari, J. et al. Evolution of spin excitations from bulk to monolayer FeSe. Nat. Commun. 12, 3122 (2021).

    Article  ADS  Google Scholar 

  45. Ament, L. J. P. et al. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article  ADS  Google Scholar 

  46. Schlappa, J. et al. Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 485, 82–85 (2012).

    Article  ADS  Google Scholar 

  47. Peng, Y. Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201–1206 (2017).

    Article  Google Scholar 

  48. Jia, C. et al. Using RIXS to uncover elementary charge and spin excitations. Phys. Rev. X 6, 021020 (2016).

    Google Scholar 

  49. Hepting, M. et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors. Nature 563, 374–378 (2018).

    Article  ADS  Google Scholar 

  50. Lu, X. et al. Spin waves in detwinned BaFe2As2. Phys. Rev. Lett. 121, 067002 (2018).

    Article  ADS  Google Scholar 

  51. Liu, C. et al. Anisotropic magnetic excitations of a frustrated bilinear-biquadratic spin model—implications for spin waves of detwinned iron pnictides. Phys. Rev. B 101, 024510 (2020).

    Article  ADS  Google Scholar 

  52. Harriger, L. W. et al. Nematic spin fluid in the tetragonal phase of BaFe2As2,. Phys. Rev. B 84, 054544 (2011).

    Article  ADS  Google Scholar 

  53. Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).

    Article  ADS  Google Scholar 

  54. Kreisel, A., Andersen, B. M. & Hirschfeld, P. J. Itinerant approach to magnetic neutron scattering of FeSe: effect of orbital selectivity. Phys. Rev. B 98, 214518 (2019).

    Article  ADS  Google Scholar 

  55. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 39–44 (2022).

    Article  ADS  Google Scholar 

  56. Yu, R., Hu, H., Nica, E. M., Zhu, J.-X. & Si, Q. Orbital selectivity in electron correlations and superconducting pairing of iron-based superconductors. Front. Phys. 9, 978347 (2021).

    Article  Google Scholar 

  57. Lafuerza, S. et al. Evidence of Mott physics in iron pnictides from X-ray spectroscopy. Phys. Rev. B 96, 045133 (2017).

    Article  ADS  Google Scholar 

  58. Watson, M. D. et al. Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe. Phys. Rev. B 95, 081106(R) (2017).

    Article  ADS  Google Scholar 

  59. Evtushinsky, D. V. et al. Direct observation of dispersive lower Hubbard band in iron-based superconductor FeSe. Preprint at https://arxiv.org/abs/1612.02313 (2016).

  60. Ding, W., Yu, R., Si, Q. & Abrahams, E. Effective exchange interactions for bad metals and implications for iron-based superconductors. Phys. Rev. B 100, 235113 (2019).

    Article  ADS  Google Scholar 

  61. Mukherjee, S., Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. Model of electronic structure and superconductivity in orbitally ordered FeSe. Phys. Rev. Lett. 115, 026402 (2015).

    Article  ADS  Google Scholar 

  62. Wang, Q. et al. Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4. Nat. Commun. 13, 1795 (2022).

    Article  ADS  Google Scholar 

  63. Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

    Article  Google Scholar 

  64. Ghiringhelli, G. et al. A high resolution spectrometer for resonant X-ray emission in the 400–1,600-eV energy range. Rev. Sci. Instrum. 77, 113108 (2006).

    Article  ADS  Google Scholar 

  65. Lu, X et al. Spin-excitation anisotropy in the nematic state of detwinned FeSe. https://figshare.com/articles/dataset/Spinexcitation_anisotropy_in_the_nematic_state_of_detwinned_FeSe/19382825 (2022).

Download references

Acknowledgements

The work at Beijing Normal University is supported by National Key Projects for Research and Development of China with Grant No. 2021YFA1400400 and the National Natural Science Foundation of China (grants nos. 11922402 and 11734002;) (X.L.). The RIXS experiments were carried out at the ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut (PSI). The work at PSI is supported by the Swiss National Science Foundation through project no. 200021_178867 and the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH; projects nos. CRSII2 160765/1 and CRSII2 141962; T.S.). The work at Renmin University was supported by the Ministry of Science and Technology of China, National Program on Key Research Project grant no. 2016YFA0300504 and Research Funds of Remnin University of China grant no. 18XNLG24 (R.Y.). The experimental work at Rice University is supported by the US Department of Energy, Basic Energy Sciences, under grant no. DE-SC0012311 (P.D.). The single-crystal synthesis work at Rice is supported by the Robert A. Welch Foundation grant no. C-1839 (P.D.). The theoretical work at Rice was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0018197, and the computational part by the Robert A. Welch Foundation grant no. C-1411 (Q.S.). Q.S. acknowledges the hospitality of the Aspen Center for Physics, which is supported by NSF grant no. PHY-1607611.

Author information

Authors and Affiliations

Authors

Contributions

X.L. conceived this project and developed the detwinning strategy. X.L. and T.S. wrote the beamtime proposals and coordinated the experiments as well as all other project phases. X.L., W.Z., Y.T., E.P., R.L., Z.T. and T.S. carried out the RIXS experiments with the support of V.N.S. X.L. analysed the data with assistance from Y.S. P.L., R.L. and Z.T. prepared the BaFe2As2 single crystals. T.C. and P.D. provided the FeSe single crystals. R.Y. and Q.S. carried out theoretical and computational analyses. X.L., P.D. and T.S. wrote the manuscript with input from R.Y. and Q.S. All authors made comments.

Corresponding authors

Correspondence to Xingye Lu, Pengcheng Dai or Thorsten Schmitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussions.

Source data

Source Data Fig. 1

Incident energy-dependent XAS and RIXS.

Source Data Fig. 2

Summary of RIXS results on detwinned FeSe and BaFe2As2.

Source Data Fig. 3

Energy dispersions and damping rates for the spin excitations of detwinned FeSe and BaFe2As2.

Source Data Fig. 4

Anisotropic magnetic excitations in detwinned FeSe and BaFe2As2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, W., Tseng, Y. et al. Spin-excitation anisotropy in the nematic state of detwinned FeSe. Nat. Phys. 18, 806–812 (2022). https://doi.org/10.1038/s41567-022-01603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01603-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing