Abstract
Nonlinear topological photonics is an emerging field that aims to extend the fascinating properties of topological states to a regime where interactions between the system constituents cannot be neglected. Interactions can trigger topological phase transitions, induce symmetry protection and robustness properties for the many-body system. Here, we report the nonlinear response of a polariton lattice that implements a driven-dissipative version of the Su–Schrieffer–Heeger model. We first demonstrate the formation of topological gap solitons bifurcating from a linear topological edge state. We then focus on the formation of gap solitons in the bulk of the lattice and show that they exhibit robust nonlinear properties against defects, owing to the underlying sublattice symmetry. Leveraging the driven-dissipative nature of the system, we discover a class of bulk gap solitons with high sublattice polarization. We show that these solitons provide an all-optical way to create a non-trivial interface for Bogoliubov excitations. Our results show that coherent driving can be exploited to stabilize new nonlinear phases and establish dissipatively stabilized solitons as a powerful resource for topological photonics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).
Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).
Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).
Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).
Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).
Meier, E. J. et al. Observation of the topological Anderson insulator in disordered atomic wires. Science 362, 929–933 (2018).
Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).
Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).
Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).
Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).
Bleu, O., Solnyshkov, D. D. & Malpuech, G. Interacting quantum fluid in a polariton Chern insulator. Phys. Rev. B 93, 085438 (2016).
Hadad, Y., Soric, J. C., Khanikaev, A. B. & Alù, A. Self-induced topological protection in nonlinear circuit arrays. Nat. Electron. 1, 178–182 (2018).
Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).
Kruk, S. et al. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol. 14, 126–130 (2019).
Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).
Solnyshkov, D. D., Bleu, O., Teklu, B. & Malpuech, G. Chirality of topological gap solitons in bosonic dimer chains. Phys. Rev. Lett. 118, 023901 (2017).
Bisianov, A., Wimmer, M., Peschel, U. & Egorov, O. A. Stability of topologically protected edge states in nonlinear fiber loops. Phys. Rev. A 100, 063830 (2019).
Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).
Guo, M. et al. Weakly nonlinear topological gap solitons in Su–Schrieffer–Heeger photonic lattices. Opt. Lett. 45, 6466–6469 (2020).
Jürgensen, M., Mukherjee, S. & Rechtsman, M. C. Quantized nonlinear Thouless pumping. Nature 596, 63–67 (2021).
Jürgensen, M. & Rechtsman, M. C. The Chern number governs soliton motion in nonlinear Thouless pumps. Phys. Rev. Lett. 128, 113901 (2022).
De Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).
Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Solnyshkov, D. D., Nalitov, A. V. & Malpuech, G. Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars. Phys. Rev. Lett. 116, 046402 (2016).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).
Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).
Parto, M. et al. Complex edge-state phase transitions in 1D topological laser arrays. In Conference on Lasers and Electro-Optics FM2E.5 (Optica Publishing Group, 2018).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).
Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).
Jeon, D. H., Reisner, M., Mortessagne, F., Kottos, T. & Kuhl, U. Non-Hermitian CT-symmetric spectral protection of nonlinear defect modes. Phys. Rev. Lett. 125, 113901 (2020).
Liu, Y. G. N., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).
Bardyn, C. E., Karzig, T., Refael, G. & Liew, T. C. Chiral Bogoliubov excitations in nonlinear bosonic systems. Phys. Rev. B 93, 020502 (2016).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 4, 1749 (2013).
Cerda-Méndez, E. A. et al. Exciton-polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013).
Whittaker, C. E. et al. Effect of photonic spin-orbit coupling on the topological edge modes of a Su-Schrieffer-Heeger chain. Phys. Rev. B 99, 081402 (2019).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011).
Mangussi, F. et al. Multi-orbital tight binding model for cavity-polariton lattices. J. Phys.: Condens. Matter 32, 315402 (2020).
Smirnova, D. A., Smirnov, L. A., Leykam, D. & Kivshar, Y. S. Topological edge states and gap solitons in the nonlinear Dirac model. Laser & Photonics Rev. 13, 1900223 (2019).
Castin, Y. Bose-Einstein condensates in atomic gases: simple theoretical results. Coherent Atomic Matter Waves 1–136 (Springer, 2001).
Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971–977 (2011).
Bardyn, C.-E. et al. Topology by dissipation. New J. Phys. 15, 085001 (2013).
Comaron, P., Shahnazaryan, V., Brzezicki, W., Hyart, T. & Matuszewski, M. Non-Hermitian topological end-mode lasing in polariton systems. Phys. Rev. Research 2, 022051 (2020).
Kartashov, Y. V. & Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators. Optica 3, 1228–1236 (2016).
Gulevich, D. R., Yudin, D., Skryabin, D. V., Iorsh, I. V. & Shelykh, I. A. Exploring nonlinear topological states of matter with exciton-polaritons: edge solitons in kagome lattice. Sci. Rep. 7, 1780 (2017).
Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photon. 13, 692–696 (2019).
El Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photon. 13, 697–700 (2019).
Banerjee, R., Mandal, S. & Liew, T. C. H. Coupling between exciton-polariton corner modes through edge states. Phys. Rev. Lett. 124, 063901 (2020).
Sarchi, D., Carusotto, I., Wouters, M. & Savona, V. Coherent dynamics and parametric instabilities of microcavity polaritons in double-well systems. Phys. Rev. B 77, 125324 (2008).
Acknowledgements
We would like to thank I. Carusotto for fruitful discussions. This work was supported by the Paris Ile-de-France Région in the framework of DIM SIRTEQ (J.B.), the Marie Skłodowska-Curie individual fellowship ToPol (P.St-J.), the H2020-FETFLAG project PhoQus (820392) (J.B. and A.A.), the QUANTERA project Interpol (ANR-QUAN-0003-05) (J.B.), the French National Research Agency project Quantum Fluids of Light (ANR-16-CE30-0021) (G.M. and J.B.), European Research Council via projects EmergenTopo (865151) (A.A.) and ARQADIA (949730) (S.R.), the French RENATECH network, the French government through the Programme Investissement d’Avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE) (G.M. and D.D.S.) and IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), managed by the Agence Nationale de la Recherche, the Labex CEMPI (ANR-11-LABX-0007) (A.A.).
Author information
Authors and Affiliations
Contributions
N.P. and P.St-J. performed the experiments and analysed the data. N.P. performed the initial theoretical modelling of the experiments using the tight-binding approach, which led to the discovery of spin-polarized topological solitons. D.D.S. and G.M. provided the theoretical guidance and performed the theoretical calculations in the 1D continuous model. N.P., P.St-J., D.D.S., G.M, N.C.Z., Q.F., B.R., O.J., A.A., S.R. and J.B. participated in the scientific discussions. N.P., P.St-J., D.D.S., G.M., A.A., S.R. and J.B. wrote the manuscript. N.C.Z., Q.F. and B.R. contributed to the editing of the manuscript. P.St-J., S.R., J.B. and A.A. designed the sample. A.L., L.L.G., T.B., A.H. and I.S. fabricated the samples. A.A., S.R. and J.B. supervised the work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–9 and Figs. 1–10.
Source data
Source Data Fig. 1
Processed data of the Cartesian plots in Fig. 1.
Source Data Fig. 2
Processed data of the Cartesian plots in Fig. 2.
Source Data Fig. 3
Processed data of the Cartesian plots in Fig. 3.
Source Data Fig. 4
Processed data of the Cartesian plots in Fig. 4.
Rights and permissions
About this article
Cite this article
Pernet, N., St-Jean, P., Solnyshkov, D.D. et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat. Phys. 18, 678–684 (2022). https://doi.org/10.1038/s41567-022-01599-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-022-01599-8
This article is cited by
-
Topological valley Hall polariton condensation
Nature Nanotechnology (2024)
-
Discrete nonlinear topological photonics
Nature Physics (2024)
-
Non-reciprocal topological solitons in active metamaterials
Nature (2024)
-
Coherent interferometric control of strongly-coupled nano-electromechanical resonators
Communications Physics (2024)
-
Realization of photonic p-orbital higher-order topological insulators
eLight (2023)