Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

A Publisher Correction to this article was published on 30 May 2022

This article has been updated


The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and iToffoli gates. Our work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental schematic and quantum circuit of the iToffoli gate.
Fig. 2: Pulse sequence and conditional Rabi oscillations of Qt.
Fig. 3: Benchmarking for a 353 ns iToffoli gate.
Fig. 4: Error budget of iToffoli gates with different gate durations.
Fig. 5: Gate synthesis of three-qubit circuits.

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history


  1. Toffoli, T. Lecture Notes in Computer Science: Reversible Computing Vol. 85 (Springer, 1980).

  2. Shi, Y. Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84–92 (2003).

    MathSciNet  MATH  Google Scholar 

  3. Aharonov, D. A simple proof that Toffoli and Hadamard are quantum universal. Preprint at (2003).

  4. Häner, T., Roetteler, M. & Svore, K. M. Factoring using 2n+2 qubits with Toffoli based modular multiplication. Quantum Inf. Comput. 17, 673 (2017).

    MathSciNet  Google Scholar 

  5. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Google Scholar 

  6. Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017).

    ADS  Google Scholar 

  7. Yoder, T. J., Takagi, R. & Chuang, I. L. Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6, 031039 (2016).

    Google Scholar 

  8. Paetznick, A. & Reichardt, B. W. Universal fault-tolerant quantum computation with only transversal gates and error correction. Phys. Rev. Lett. 111, 090505 (2013).

    ADS  Google Scholar 

  9. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    ADS  Google Scholar 

  10. Figgatt, C. et al. Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368–372 (2019).

    ADS  Google Scholar 

  11. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    ADS  Google Scholar 

  12. Yu, N., Duan, R. & Ying, M. Five two-qubit gates are necessary for implementing the Toffoli gate. Phys. Rev. A 88, 010304(R) (2013).

    ADS  Google Scholar 

  13. Smith, E. et al. LEAP: scaling numerical optimization based synthesis using an incremental approach. Preprint at (2021).

  14. Monz, T. et al. Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009).

    ADS  Google Scholar 

  15. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS  Google Scholar 

  16. Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    ADS  Google Scholar 

  17. Fedorov, A., Steffen, L., Baur, M., da Silva, M. P. & Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012).

    ADS  Google Scholar 

  18. Hill, A. D., Hodson, M. J., Didier, N. & Reagor, M. J. Realization of arbitrary doubly-controlled quantum phase gates. Preprint at (2021).

  19. Roy, T. et al. Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl. 14, 014072 (2020).

    ADS  Google Scholar 

  20. Khazali, M. & Mølmer, K. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits. Phys. Rev. X 10, 021054 (2020).

    Google Scholar 

  21. Zahedinejad, E., Ghosh, J. & Sanders, B. C. High-fidelity single-shot Toffoli gate via quantum control. Phys. Rev. Lett. 15, 200502 (2015).

    Google Scholar 

  22. Rasmussen, S. E., Groenland, K., Gerritsma, R., Schoutens, K. & Zinner, N. T. Single-step implementation of high-fidelity n-bit Toffoli gates. Phys. Rev. A 101, 022308 (2020).

    ADS  Google Scholar 

  23. IBM Quantum;

  24. Maslov, D. Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization. Phys. Rev. A 93, 022311 (2016).

    ADS  Google Scholar 

  25. Jones, C. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87, 022328 (2013).

    ADS  Google Scholar 

  26. Selinger, P. Quantum circuits of T-depth one. Phys. Rev. A 87, 042302 (2013).

    ADS  Google Scholar 

  27. Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).

    ADS  Google Scholar 

  28. Kandala, A. et al. Demonstration of a high-fidelity CNOT gate for fixed-frequency transmons with engineered ZZ suppression. Phys. Rev. Lett. 127, 130501 (2021).

    ADS  Google Scholar 

  29. Mitchell, B. K. et al. Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Phys. Rev. Lett. 127, 200502 (2021).

    ADS  Google Scholar 

  30. Wei, K. X. et al. Quantum crosstalk cancellation for fast entangling gates and improved multi-qubit performance. Preprint at (2021).

  31. Koch, J. et al. Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  32. Rigetti, C. & Devoret, M. Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Phys. Rev. B 81, 134507 (2010).

    ADS  Google Scholar 

  33. Chow, J. M. et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett. 107, 080502 (2011).

    ADS  Google Scholar 

  34. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    ADS  Google Scholar 

  35. Jordan, T. F. Berry phases for partial cycles. Phys. Rev. A 38, 1590–1592 (1988).

    ADS  Google Scholar 

  36. Cho, Y.-W. et al. Emergence of the geometric phase from quantum measurement back-action. Nat. Phys. 15, 665–670 (2019).

    Google Scholar 

  37. Tripathi, V., Khezri, M. & Korotkov, A. N. Operation and intrinsic error budget of a two-qubit cross-resonance gate. Phys. Rev. A 100, 012301 (2019).

    ADS  Google Scholar 

  38. Magesan, E. & Gambetta, J. M. Effective Hamiltonian models of the cross-resonance gate. Phys. Rev. A 101, 052308 (2020).

    ADS  MathSciNet  Google Scholar 

  39. Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  40. Nachman, B., Urbanek, M., de Jong, W. A. & Bauer, C. W. Unfolding quantum computer readout noise. npj Quantum Inf. 6, 84 (2020).

    ADS  Google Scholar 

  41. Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

    ADS  Google Scholar 

  42. Magesan, E. et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012).

    ADS  MATH  Google Scholar 

  43. Morvan, A. et al. Qutrit randomized benchmarking. Phys. Rev. Lett. 126, 210504 (2021).

    ADS  Google Scholar 

  44. McKay, D. C., Sheldon, S., Smolin, J. A., Chow, J. M. & Gambetta, J. M. Three qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019).

    ADS  Google Scholar 

  45. Carignan-Dugas, A., Wallman, J. & Emerson, J. Bounding the average gate fidelity of composite channels using the unitarity. New J. Phys. 21, 053016 (2019).

    ADS  MathSciNet  Google Scholar 

  46. Dawkins, H., Wallman, J. & Emerson, J. Combining T1 and T2 estimation with randomized benchmarking and bounding the diamond distance. Phys. Rev. A 102, 022220 (2020).

    ADS  MathSciNet  Google Scholar 

  47. Cai, T.-Q. et al. Impact of spectators on a two-qubit gate in a tunable coupling superconducting circuit. Phys. Rev. Lett. 127, 060505 (2021).

    ADS  Google Scholar 

  48. Gu, X. et al. Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum 2, 040348 (2021).

    ADS  Google Scholar 

  49. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Google Scholar 

  50. Beale, S. J. et al. True-Q version 2.9.4 (Keysight Technologies, 2020);

  51. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a python framework for the dynamics of open quantum systems. Comp. Phys. Comm. 184, 1234–1240 (2013).

    ADS  Google Scholar 

  52. Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A 93, 060302(R) (2016).

    ADS  Google Scholar 

Download references


We are grateful to J. Wallman and I. Hincks for conversations and insights. This work was funded by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research Quantum Testbed Program under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations



Y.K. conceived and planned the experiments. Y.K., A.M., and L.B.N. performed the experiments and analysed the data. R.K.N., C.J., and L.C. contributed to the analysis and discussion of the results. J.M.K. fabricated the qubit device. Y.K. wrote the manuscript with assistance from A.M. and L.B.N. All work was carried out under the supervision of D.I.S. and I.S.

Corresponding author

Correspondence to Yosep Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Anton Kockum, Xiao Mi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5 and Figs. 1–9.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Morvan, A., Nguyen, L.B. et al. High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits. Nat. Phys. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing