Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of matter-wave polaritons in an optical lattice


The polariton—a quasiparticle formed by the strong coupling of a photon to a matter excitation—is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor nanophotonics to circuit quantum electrodynamics. Exploiting the interaction between polaritons has led to the realization of superfluids of light as well as of strongly correlated phases in the microwave domain, with similar efforts underway for microcavity excitons–polaritons. Here we develop an ultracold-atom analogue of an exciton–polariton system in which interacting polaritonic phases can be studied with full tunability and in the absence of dissipation. In our optical lattice system, the exciton is replaced by an atomic excitation, whereas an atomic matter wave is substituted for the photon under a strong dynamical coupling between the two constituents that hybridizes the two dispersion relations. We spectroscopically access the band structure of the matter-wave polariton by coupling the upper and lower polariton branches, as well as explore polaritonic transport in the superfluid and Mott-insulating regimes, finding quantitative agreement with our theoretical expectations. Our work sheds light on fundamental polariton properties and related many-body phenomena, and opens up novel possibilities for studies of polaritonic quantum matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental schematic and polariton formation.
Fig. 2: Excitation spectra in the Mott regime (s = 40, s = 14).
Fig. 3: Polariton band structure, calculated for s = 10.
Fig. 4: Renormalization of hopping extracted from the coherence of the |r〉 component at s = 18.

Similar content being viewed by others


  1. Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958).

    Article  ADS  Google Scholar 

  2. Pekar, S. Theory of electromagnetic waves in a crystal with excitons. J. Phys. Chem. Solids 5, 11–22 (1958).

    Article  ADS  Google Scholar 

  3. Mills, D. L. & Burstein, E. Polaritons: electromagnetic modes of media. Rep. Prog. Phys. 37, 817–926 (1974).

    Article  ADS  Google Scholar 

  4. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  5. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  6. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Google Scholar 

  7. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  8. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article  ADS  Google Scholar 

  9. Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).

    Article  Google Scholar 

  10. Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

    Article  ADS  Google Scholar 

  11. Cuevas, Á. et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Sci. Adv. 4, aao6814 (2018).

    Article  ADS  Google Scholar 

  12. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).

    Article  ADS  Google Scholar 

  14. Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2016).

    Article  ADS  Google Scholar 

  15. Liu, Y. & Houck, A. A. Quantum electrodynamics near a photonic bandgap. Nat. Phys. 13, 48–52 (2017).

    Article  Google Scholar 

  16. Sundaresan, N. M., Lundgren, R., Zhu, G., Gorshkov, A. V. & Houck, A. A. Interacting qubit-photon bound states with superconducting circuits. Phys. Rev. X 9, 011021 (2019).

    Google Scholar 

  17. Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    Article  Google Scholar 

  18. Krinner, L., Stewart, M., Pazmiño, A., Kwon, J. & Schneble, D. Spontaneous emission of matter waves from a tunable open quantum system. Nature 559, 589–592 (2018).

    Article  ADS  Google Scholar 

  19. Stewart, M., Kwon, J., Lanuza, A. & Schneble, D. Dynamics of matter-wave quantum emitters in a structured vacuum. Phys. Rev. Res. 2, 043307 (2020).

    Article  Google Scholar 

  20. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    Article  Google Scholar 

  21. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).

    Article  Google Scholar 

  22. Shi, T., Wu, Y.-H., González-Tudela, A. & Cirac, J. I. Effective many-body Hamiltonians of qubit-photon bound states. New J. Phys. 20, 105005 (2018).

    Article  Google Scholar 

  23. Lanuza, A., Kwon, J., Kim, Y. & Schneble, D. Multiband and array effects in matter-wave-based waveguide QED. Phys. Rev. A 105, 023703 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  24. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    Article  ADS  Google Scholar 

  25. Kollath, C., Iucci, A., Giamarchi, T., Hofstetter, W. & Schollwöck, U. Spectroscopy of ultracold atoms by periodic lattice modulations. Phys. Rev. Lett. 97, 050402 (2006).

    Article  ADS  Google Scholar 

  26. Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. Spatial correlations of trapped one-dimensional bosons in an optical lattice. Phys. Rev. A 69, 031601 (2004).

    Article  ADS  Google Scholar 

  27. Pertot, D., Gadway, B. & Schneble, D. Collinear four-wave mixing of two-component matter waves. Phys. Rev. Lett. 104, 200402 (2010).

    Article  ADS  Google Scholar 

  28. Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett. 107, 145306 (2011).

    Article  ADS  Google Scholar 

  29. Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008).

    Article  ADS  Google Scholar 

  30. Tomita, T., Nakajima, S., Danshita, I., Takasu, Y. & Takahashi, Y. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system. Sci. Adv. 3, 1701513 (2017).

    Article  ADS  Google Scholar 

  31. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  32. Ouellet-Plamondon, C., Sallen, G., Jabeen, F., Oberli, D. Y. & Deveaud, B. Multiple polariton modes originating from the coupling of quantum wells in planar microcavity. Phys. Rev. B 92, 075313 (2015).

    Article  ADS  Google Scholar 

  33. Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).

    Google Scholar 

  34. Solnyshkov, D. D. et al. Microcavity polaritons for topological photonics. Opt. Mater. Express 11, 1119–1142 (2021).

    Article  ADS  Google Scholar 

  35. Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  36. Grimm, R., Weidemüller, M. & Ovchinnikov, Yu. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  37. Gadway, B., Pertot, D., Reeves, J. & Schneble, D. Probing an ultracold-atom crystal with matter waves. Nat. Phys. 8, 544–549 (2012).

    Article  Google Scholar 

  38. Reeves, J., Krinner, L., Stewart, M., Pazmiño, A. & Schneble, D. Nonadiabatic diffraction of matter waves. Phys. Rev. A 92, 023628 (2015).

    Article  ADS  Google Scholar 

  39. Stewart, M., Krinner, L., Pazmiño, A. & Schneble, D. Analysis of non-Markovian coupling of a lattice-trapped atom to free space. Phys. Rev. A 95, 013626 (2017).

    Article  ADS  Google Scholar 

Download references


We thank M. Stewart, M. G. Cohen, Y. Li and T.-C. Wei for discussions, and M.G.Cohen for a critical reading of the manuscript. This work was supported by NSF PHY-1912546, with additional funds from SUNY Center for Quantum Information Science on Long Island.

Author information

Authors and Affiliations



D.S., J.K. and Y.K. designed the experiments. J.K. and Y.K. took the measurements. Data analysis was performed by J.K., Y.K. and A.L. Theoretical modelling was done by A.L. The results were discussed and interpreted by all the authors. Figures were created by J.K. and A.L. D.S. supervised the project. The manuscript was written by J.K. and D.S. with contributions from A.L. and Y.K.

Corresponding author

Correspondence to Dominik Schneble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Marzena Szymanska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reversibility of polariton formation.

Fraction of \(\left|b\right\rangle\) atoms (blue) and peak width of \(\left|r\right\rangle\) atoms (orange) after a symmetric microwave ramp up and down (each over 2.5 ms) for the parameters of Fig. 4 at s = 10. The dotted open blue circle is the blue atom fraction for the sequence of Fig. 2c without lattice modulation applied. We suspect that the degradation comes from magnetic-field noise that is able to drive LP -> UP transitions by directly affecting Δ.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J., Kim, Y., Lanuza, A. et al. Formation of matter-wave polaritons in an optical lattice. Nat. Phys. 18, 657–661 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing