Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ control of effective Kerr nonlinearity with Pockels integrated photonics

Abstract

Nanophotonic cavities with Kerr nonlinearities are a versatile platform both to explore fundamental physics and to develop practical photonic technologies1,2,3. This is possible because nanoscale structures allow precise dispersion control and provide significant field enhancement. To improve the functionality and performance of photonic devices even further, direct control of the Kerr nonlinearity would be desirable. Here, we report the in situ control of integrated Kerr nonlinearity through its interplay with the cascaded second-order nonlinear process4,5,6,7,8,9. We observe a Fano resonance in the nonlinear spectrum rather than in the linear transmission10, confirming the quantum interference between competing optical nonlinear pathways. The Kerr nonlinearity is tuned over a dynamic range of 10 dB without modifying the photonic structure. We also demonstrate the suppression of the intrinsic material nonlinearity and we use the tunable nonlinearity to control the spectral brightness and coincidence-to-accidental ratio of single-photon generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effective Kerr nonlinearity with cascaded Pockels process.
Fig. 2: Enhancement of Kerr nonlinearity.
Fig. 3: Quantum interference between nonlinear processes.
Fig. 4: Continuous tuning of Kerr nonlinear strength in the quantum regime.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  2. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  3. Kues, M. et al. Quantum optical microcombs. Nat. Photonics 13, 170–179 (2019).

    Article  ADS  Google Scholar 

  4. Schiek, R. Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures. J. Opt. Soc. Am. B 10, 1848–1855 (1993).

    Article  ADS  Google Scholar 

  5. White, A., Mlynek, J. & Schiller, S. Cascaded second-order nonlinearity in an optical cavity. Europhys. Lett. 35, 425–430 (1996).

    Article  ADS  Google Scholar 

  6. Biaggio, I. Degenerate four-wave mixing in noncentrosymmetric materials. Phys. Rev. A 64, 063813 (2001).

    Article  ADS  Google Scholar 

  7. Kolleck, C. Cascaded second-order contribution to the third-order nonlinear susceptibility. Phys. Rev. A 69, 053812 (2004).

    Article  ADS  Google Scholar 

  8. Li, M., Zou, C.-L., Dong, C.-H. & Dai, D.-X. Optimal third-harmonic generation in an optical microcavity with χ(2) and χ(3) nonlinearities. Opt. Express 26, 27294–27304 (2018).

    Article  ADS  Google Scholar 

  9. Li, M., Zou, C.-L., Dong, C.-H., Ren, X.-F. & Dai, D.-X. Enhancement of second-harmonic generation based on the cascaded second-and third-order nonlinear processes in a multimode optical microcavity. Phys. Rev. A 98, 013854 (2018).

    Article  ADS  Google Scholar 

  10. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).

    Article  Google Scholar 

  11. Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).

    Article  ADS  Google Scholar 

  12. Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    Article  ADS  Google Scholar 

  13. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  14. Dong, P. et al. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express 18, 9852–9858 (2010).

    Article  ADS  Google Scholar 

  15. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  16. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  Google Scholar 

  17. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  18. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article  ADS  Google Scholar 

  19. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article  ADS  Google Scholar 

  20. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  22. Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2013).

    Article  Google Scholar 

  23. Li, M. et al. Photon-level tuning of photonic nanocavities. Optica 6, 860–863 (2019).

    Article  ADS  Google Scholar 

  24. Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article  ADS  Google Scholar 

  25. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  26. Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    Article  ADS  Google Scholar 

  27. Brod, D. J. & Combes, J. Passive C-phase gate via cross-Kerr nonlinearities. Phys. Rev. Lett. 117, 080502 (2016).

    Article  ADS  Google Scholar 

  28. Heuck, M., Jacobs, K. & Englund, D. R. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020).

    Article  ADS  Google Scholar 

  29. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  30. Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photonics 10, 766–770 (2016).

    Article  ADS  Google Scholar 

  31. Fan, L., Zou, C.-L., Zhu, N. & Tang, H. X. Spectrotemporal shaping of itinerant photons via distributed nanomechanics. Nat. Photonics 13, 323–327 (2019).

    Article  ADS  Google Scholar 

  32. Iwatsuki, K., Hotate, K. & Higashiguchi, M. Kerr effect in an optical passive ring-resonator gyro. J. Light. Technol. 4, 645–651 (1986).

    Article  ADS  Google Scholar 

  33. Liang, W. et al. Resonant microphotonic gyroscope. Optica 4, 114–117 (2017).

    Article  ADS  Google Scholar 

  34. Ellis, A. D., Zhao, J. & Cotter, D. Approaching the non-linear Shannon limit. J. Light. Technol. 28, 423–433 (2009).

    Article  Google Scholar 

  35. Le, S. T., Aref, V. & Buelow, H. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics 11, 570–576 (2017).

    Article  Google Scholar 

  36. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  37. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photonics 15, 305–310 (2021).

    Article  ADS  Google Scholar 

  38. Bosshard, C. et al. Cascaded contributions to degenerate four-wave mixing in an acentric organic crystal. Opt. Lett. 24, 196–198 (1999).

    Article  ADS  Google Scholar 

  39. Tan, H.-T. & Huang, H. Bright quadripartite entanglement from competing χ(2) nonlinearities. Phys. Rev. A 83, 015802 (2011).

    Article  ADS  Google Scholar 

  40. Sasagawa, K. & Tsuchiya, M. Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator. Appl. Phys. Express 2, 122401 (2009).

    Article  ADS  Google Scholar 

  41. Ulvila, V., Phillips, C. R., Halonen, L. & Vainio, M. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett. 38, 4281–4284 (2013).

    Article  ADS  Google Scholar 

  42. Li, G.-Z., Chen, Y.-P., Jiang, H.-W. & Chen, X.-F. Enhanced Kerr electro-optic nonlinearity and its application in controlling second-harmonic generation. Photonics Res. 3, 168–172 (2015).

    Article  Google Scholar 

  43. Liu, S., Zheng, Y. & Chen, X. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett. 42, 3626–3629 (2017).

    Article  ADS  Google Scholar 

  44. Wolf, R., Breunig, I., Zappe, H. & Buse, K. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25, 29927–29933 (2017).

    Article  ADS  Google Scholar 

  45. Zhang, L. et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett. 45, 3353–3356 (2020).

    Article  ADS  Google Scholar 

  46. Dorrer, C., Roides, R., Bromage, J. & Zuegel, J. Self-phase modulation compensation in a regenerative amplifier using cascaded second-order nonlinearities. Opt. Lett. 39, 4466–4469 (2014).

    Article  ADS  Google Scholar 

  47. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    Article  ADS  Google Scholar 

  48. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    Article  ADS  Google Scholar 

  49. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article  ADS  Google Scholar 

  50. Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

    Article  ADS  Google Scholar 

  51. Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

    Article  ADS  Google Scholar 

  52. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.F. acknowledges support from the US Department of Energy, Office of Advanced Scientific Computing Research, (Field Work Proposal ERKJ355), the Office of Naval Research (N00014-19-1-2190), the National Science Foundation (ECCS-1842559, CCF-190791), the NSF Center for Quantum Networks, AFOSR (FA9550-21-1-0225) and the II-VI foundation. C.C. acknowledges support from the National Science Foundation (ECCS-1842559). L.Z. acknowledges support from AFOSR (FA9550-21-1-0225). Device fabrication was performed in the OSC cleanrooms at the University of Arizona and the cleanroom of Arizona State University. Superconducting nanowire single-photon detectors are supported by NSF MRI INQUIRE.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and L.F. conceived the idea, designed the experiment and analysed the data. L.Z. designed and fabricated the device. C.C. derived the theoretical model and performed the measurement. L.F. supervised the work.

Corresponding author

Correspondence to Linran Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Thiago Alegre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3 and Figs. S1–S5.

Source data

Source Data Fig. 2

Source date for Fig. 2b–e.

Source Data Fig. 3

Source date for Fig. 3d.

Source Data Fig. 4

Source date for Fig. 4a–g.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhang, L. & Fan, L. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nat. Phys. 18, 497–501 (2022). https://doi.org/10.1038/s41567-022-01542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01542-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing