Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationships between structure, memory and flow in sheared disordered materials


A fundamental challenge regarding disordered solids is predicting macroscopic yield—the point at which elastic behaviour changes to plastic behaviour—from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we subject two-dimensional dense colloidal systems to oscillatory shear, measure the particle trajectories and bulk rheology, and quantify particle microstructure using excess entropy. Our results reveal a direct relation between excess entropy and energy dissipation that is insensitive to the nature of interactions amongst particles. We use this relation to build a physically informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of structure, dynamics and response.
Fig. 2: Memory within microstructure.
Fig. 3: Entropy and material memories.
Fig. 4: Comparisons of imposed force, microstructural excess entropy and bulk rheology.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.


  1. Nagel, S. R. Experimental soft-matter science. Rev. Mod. Phys. 89, 025002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  2. Ioannidou, K. et al. Mesoscale texture of cement hydrates. Proc. Natl Acad. Sci. U. S. A. 113, 2029–2034 (2016).

    Article  ADS  Google Scholar 

  3. Jerolmack, D. J. & Daniels, K. E. Viewing Earth’s surface as a soft-matter landscape. Nat. Rev. Phys. 1, 716–730 (2019).

    Article  Google Scholar 

  4. Nie, S., Jiang, Q., Cui, L. & Zhang, C. Investigation on solid–liquid transition of soft mud under steady and oscillatory shear loads. Sediment. Geol. 397, 105570 (2020).

    Article  Google Scholar 

  5. Falk, M. L. & Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998).

    Article  ADS  Google Scholar 

  6. Buttinoni, I. et al. Colloidal polycrystalline monolayers under oscillatory shear. Phys. Rev. E 95, 012610 (2017).

    Article  ADS  Google Scholar 

  7. Guazzelli, l & Pouliquen, O. Rheology of dense granular suspensions. J. Fluid Mech. 852, P1 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cipelletti, L., Martens, K. & Ramos, L. Microscopic precursors of failure in soft matter. Soft Matter 16, 82–93 (2020).

    Article  ADS  Google Scholar 

  9. Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).

    Article  Google Scholar 

  10. Galloway, K. L. et al. Scaling of relaxation and excess entropy in plastically deformed amorphous solids. Proc. Natl Acad. Sci. U. S. A. 117, 11887–11893 (2020).

    Article  MathSciNet  Google Scholar 

  11. Ingebrigtsen, T. S. & Tanaka, H. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids. Proc. Natl Acad. Sci. U. S. A. 115, 87–92 (2018).

    Article  ADS  Google Scholar 

  12. Bonnecaze, R. T., Khabaz, F., Mohan, L. & Cloitre, M. Excess entropy scaling for soft particle glasses. J. Rheol. 64, 423–431 (2020).

    Article  ADS  Google Scholar 

  13. Dyre, J. C. Perspective: excess-entropy scaling. J. Chem. Phys. 149, 210901 (2018).

    Article  ADS  Google Scholar 

  14. Separdar, L., Bailey, N. P., Schrøder, T. B., Davatolhagh, S. & Dyre, J. C. Isomorph invariance of couette shear flows simulated by the sllod equations of motion. J. Chem. Phys. 138, 154505 (2013).

    Article  ADS  Google Scholar 

  15. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. U. S. A. 97, 2990–2994 (2000).

    Article  ADS  Google Scholar 

  16. Hallett, J. E., Turci, F. & Royall, C. P. Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations. Nat. Commun. 9, 1–10 (2018).

    Article  Google Scholar 

  17. Argon, A. Plastic deformation in metallic glasses. Acta Metal. 27, 47 – 58 (1979).

    Article  Google Scholar 

  18. Siebenbürger, M., Fuchs, M., Winter, H. & Ballauff, M. Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: comparison with mode-coupling theory. J. Rheol. 53, 707–726 (2009).

    Article  ADS  Google Scholar 

  19. Slotterback, S. et al. Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E 85, 021309 (2012).

    Article  ADS  Google Scholar 

  20. Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).

    Article  ADS  Google Scholar 

  21. Chen, K. et al. Low-frequency vibrations of soft colloidal glasses. Phys. Rev. Lett. 105, 025501 (2010).

    Article  ADS  Google Scholar 

  22. Xu, N., Wyart, M., Liu, A. J. & Nagel, S. R. Excess vibrational modes and the boson peak in model glasses. Phys. Rev. Lett. 98, 175502 (2007).

    Article  ADS  Google Scholar 

  23. Patinet, S., Vandembroucq, D. & Falk, M. L. Connecting local yield stresses with plastic activity in amorphous solids. Phys. Rev. Lett. 117, 045501 (2016).

    Article  ADS  Google Scholar 

  24. Patinet, S., Barbot, A., Lerbinger, M., Vandembroucq, D. & Lemaitre, A. Origin of the Bauschinger effect in amorphous solids. Phys. Rev. Lett. 124, 205503 (2020).

    Article  ADS  Google Scholar 

  25. Maestro, A. & Zaccone, A. Nonaffine deformation and tunable yielding of colloidal assemblies at the air–water interface. Nanoscale 9, 18343–18351 (2017).

    Article  Google Scholar 

  26. Bouchbinder, E. & Langer, J. S. Shear-transformation-zone theory of linear glassy dynamics. Phys. Rev. E 83, 061503 (2011).

    Article  ADS  Google Scholar 

  27. Keim, N. C. & Nagel, S. R. Generic transient memory formation in disordered systems with noise. Phys. Rev. Lett. 107, 010603 (2011).

    Article  ADS  Google Scholar 

  28. Mukherji, S., Kandula, N., Sood, A. & Ganapathy, R. Strength of mechanical memories is maximal at the yield point of a soft glass. Phys. Rev. Lett. (2019).

  29. Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging, memory, and nature’s greed. Sci. Adv. (2019).

  30. Keim, N. C., Hass, J., Kroger, B. & Wieker, D. Global memory from local hysteresis in an amorphous solid. Phys. Rev. Res. 2, 012004 (2020).

    Article  Google Scholar 

  31. Gadala-Maria, F. & Acrivos, A. Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24, 799–814 (1980).

    Article  ADS  Google Scholar 

  32. Keim, N. C., Paulsen, J. D. & Nagel, S. R. Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity. Phys. Rev. E 88, 032306 (2013).

    Article  ADS  Google Scholar 

  33. Keim, N. C. & Arratia, P. E. Yielding and microstructure in a 2d jammed material under shear deformation. Soft Matter 9, 6222–6225 (2013).

    Article  ADS  Google Scholar 

  34. Teich, E. G., Galloway, K. L., Arratia, P. E. & Bassett, D. S. Crystalline shielding mitigates structural rearrangement and localizes memory in jammed systems under oscillatory shear. Sci. Adv. (2021).

  35. Keim, N. C. & Arratia, P. E. Mechanical and microscopic properties of the reversible plastic regime in a 2D jammed material. Phys. Rev. Lett. 112, 028302 (2014).

    Article  ADS  Google Scholar 

  36. Lundberg, M., Krishan, K., Xu, N., O’Hern, C. S. & Dennin, M. Reversible plastic events in amorphous materials. Phys. Rev. E 77, 041505 (2008).

    Article  ADS  Google Scholar 

  37. Möbius, R. & Heussinger, C. (ir)reversibility in dense granular systems driven by oscillating forces. Soft Matter 10, 4806–4812 (2014).

    Article  ADS  Google Scholar 

  38. Regev, I., Lookman, T. & Reichhardt, C. Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E 88, 062401 (2013).

    Article  ADS  Google Scholar 

  39. van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. 22, 033101 (2009).

    Article  Google Scholar 

  40. Behringer, R. & Chakraborty, B. The physics of jamming for granular materials: a review. Rep. Prog. Phys. 82, 012601 (2018).

    Article  ADS  Google Scholar 

  41. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  ADS  Google Scholar 

  42. Martinez, L. & Angell, C. A. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001).

    Article  ADS  Google Scholar 

  43. Vermant, J. & Solomon, M. J. Flow-induced structure in colloidal suspensions. J. Phys. Condens. 17, R187–R216 (2005).

    Article  ADS  Google Scholar 

  44. Cheng, X., McCoy, J. H., Israelachvili, J. N. & Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 1276–1279 (2011).

    Article  ADS  Google Scholar 

  45. Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M. & Bonnecaze, R. T. A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838–843 (2011).

    Article  ADS  Google Scholar 

  46. Parsi, F. & Gadala-Maria, F. Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31, 725–732 (1987).

    Article  ADS  Google Scholar 

  47. Dudowicz, J., Freed, K. F. & Douglas, J. F. Generalized Entropy Theory of Polymer Glass Formation (Wiley, 2007).

  48. Bi, D., Henkes, S., Daniels, K. E. & Chakraborty, B. The statistical physics of athermal materials. Annu. Rev. Condens. Matter Phys. 6, 63–83 (2015).

    Article  ADS  Google Scholar 

  49. Ono, I. K. et al. Effective temperatures of a driven system near jamming. Phys. Rev. Lett. 89, 095703 (2002).

    Article  ADS  Google Scholar 

  50. Khabaz, F. & Bonnecaze, R. T. Thermodynamics of shear-induced phase transition of polydisperse soft particle glasses. Phys. Fluids 33, 013315 (2021).

    Article  ADS  Google Scholar 

  51. Shahin, G. The Stress Deformation Interfacial Rheometer. Ph.D. thesis, University of Pennsylvania (1986).

  52. Brooks, C. F., Fuller, G. G., Frank, C. W. & Robertson, C. R. An interfacial stress rheometer to study rheological transitions in monolayers at the air/water interface. Langmuir 15, 2450–2459 (1999).

    Article  Google Scholar 

  53. Reynaert, S., Brooks, C. F., Moldenaers, P., Vermant, J. & Fuller, G. G. Analysis of the magnetic rod interfacial stress rheometer. J. Rheol. 52, 261–285 (2008).

    Article  ADS  Google Scholar 

  54. Aveyard, R., Clint, J. H., Nees, D. & Paunov, V. N. Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces. Langmuir 16, 1969–1979 (2000).

    Article  Google Scholar 

  55. Masschaele, K., Park, B. J., Furst, E. M., Fransaer, J. & Vermant, J. Finite ion-size effects dominate the interaction between charged colloidal particles at an oil–water interface. Phys. Rev. Lett. 105, 048303 (2010).

    Article  ADS  Google Scholar 

  56. Park, B. J., Vermant, J. & Furst, E. M. Heterogeneity of the electrostatic repulsion between colloids at the oil–water interface. Soft Matter 6, 5327–5333 (2010).

    Article  ADS  Google Scholar 

  57. Keim, N. C. & Arratia, P. E. Role of disorder in finite-amplitude shear of a 2D jammed material. Soft Matter 11, 1539–1546 (2015).

    Article  ADS  Google Scholar 

  58. Larson, R. The Structure and Rheology of Complex Fluids (Oxford Univ. Press, 2010).

  59. Baranyai, A. & Evans, D. J. Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989).

    Article  ADS  Google Scholar 

  60. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics (Sandia National Labs, 1993).

  61. Widom, M., Strandburg, K. J. & Swendsen, R. H. Quasicrystal equilibrium state. Phys. Rev. Lett. 58, 706 (1987).

    Article  ADS  Google Scholar 

  62. Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations on gpus. Comput. Phys. Commun. 192, 97–107 (2015).

    Article  Google Scholar 

  63. Anderson, J. A., C. D., L. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

    Article  ADS  MATH  Google Scholar 

  64. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  ADS  Google Scholar 

Download references


We thank D. Durian, A. Liu, R. Riggleman, I. Regev and S. Kosgodagan Acharige for fruitful discussions. We especially thank A. Liu and R. Riggleman for the generous contribution of computational resources for our simulations. This work is partially funded by University of Pennsylvania’s MRSEC NSF-DMR-1720530 (K.L.G., E.G.T., X.G.M., Ch.K., I.R.G., D.J.J., A.G.Y. and P.E.A.) and by ARO W911-NF-16-1-0290 (K.L.G., D.J.J. and P.E.A.) and by NSF-DMR-2003659 (A.G.Y., X.G.M.). C.R. further thanks the NSF for career award CMMI-2047506.

Author information

Authors and Affiliations



D.J.J., A.G.Y. and P.E.A. designed the research. K.L.G. and N.C.K. conducted the experiments. Ch.K. and I.R.G. ran the simulations. The analysis and model were developed by K.L.G., C.R., X.G.M., A.G.Y. and P.E.A. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to P. E. Arratia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Francesco Turci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials

Supplementary Video

Radial distribution function, g(x,y,t), accompanying Fig. 2a.

Source data

Source Data Fig. 1

Data accompanying Fig. 1

Source Data Fig. 2

Data accompanying Fig. 2

Source Data Fig. 3

Data accompanying Fig. 3

Source Data Fig. 4

Data accompanying Fig. 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galloway, K.L., Teich, E.G., Ma, X.G. et al. Relationships between structure, memory and flow in sheared disordered materials. Nat. Phys. 18, 565–570 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing