Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates

Abstract

As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi2Sr2Can − 1CunO2n + 4 + δ cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive d-wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nodal QPI and antinodal symmetry-breaking state in underdoped Bi-2223 (sample 1).
Fig. 2: The \({\sqrt 2 }{{{a}}} \times {\sqrt 2 }{{{a}}}\) modulation in overdoped Bi-2223 (sample 5).
Fig. 3: Particle–hole asymmetric SC coherence peaks in sample 5.
Fig. 4: Universality of the particle–hole asymmetry and its doping evolution.
Fig. 5: Theoretical model of the particle–hole asymmetry involving flat band scattering.

Similar content being viewed by others

Data availability

The data used to support the findings of this work are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2 − xSrxCuO4. Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  2. Vignolle, B. et al. Quantum oscillations in an overdoped high-Tc superconductor. Nature 455, 952–955 (2008).

    Article  ADS  Google Scholar 

  3. Plate, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6 + δ. Phys. Rev. Lett. 95, 077001 (2005).

    Article  ADS  Google Scholar 

  4. Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

    Article  Google Scholar 

  5. Zhong, Y. G. et al. Continuous doping of a cuprate surface: insights from in situ angle-resolved photoemission. Phys. Rev. B 98, 140507 (2018).

    Article  ADS  Google Scholar 

  6. Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-Tc superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003).

    Article  ADS  Google Scholar 

  7. Rourke, P. M. C. et al. Phase-fluctuating superconductivity in overdoped La2 − xSrxCuO4. Nat. Phys. 7, 455–458 (2011).

    Article  Google Scholar 

  8. Kondo, T. et al. Point nodes persisting far beyond Tc in Bi2212. Nat. Commun. 6, 7699 (2015).

    Article  ADS  Google Scholar 

  9. Peng, Y. Y. et al. Re-entrant charge order in overdoped (Bi,Pb)2.12Sr1.88CuO6 + δ outside the pseudogap regime. Nat. Mater. 17, 697–702 (2018).

    Article  ADS  Google Scholar 

  10. Wu, J., Bollinger, A. T., He, X. & Bozovic, I. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017).

    Article  Google Scholar 

  11. Kurashima, K. et al. Development of ferromagnetic fluctuations in heavily overdoped (Bi,Pb)2Sr2CuO6 + δ copper oxides. Phys. Rev. Lett. 121, 057002 (2018).

    Article  ADS  Google Scholar 

  12. Dean, M. P. M. et al. Persistence of magnetic excitations in La2 − xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1018–1022 (2013).

    Article  ADS  Google Scholar 

  13. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  Google Scholar 

  14. Mahmood, F., He, X., Božović, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2 − xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).

    Article  ADS  Google Scholar 

  15. Li, H. et al. Coherent organization of electronic correlations as a mechanism to enhance and stabilize high-Tc cuprate superconductivity. Nat. Commun. 9, 26 (2018).

    Article  ADS  Google Scholar 

  16. He, Y. et al. Superconducting fluctuations in overdoped Bi2Sr2CaCu2O8 + δ. Phys. Rev. X 11, 031068 (2020).

    Google Scholar 

  17. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  18. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8 + δ. Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  19. Wang, Q. H. & Lee, D. H. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  20. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2 − xNaxCuO2Cl2. Nat. Phys. 3, 865–871 (2007).

    Article  Google Scholar 

  21. Fujita, K. et al. Bogoliubov angle and visualization of particle–hole mixture in superconductors. Phys. Rev. B 78, 054510 (2008).

    Article  ADS  Google Scholar 

  22. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2 − xNaxCuO2Cl2. Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  23. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8 + x. Nature 468, 677–680 (2010).

    Article  ADS  Google Scholar 

  24. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  25. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8 + δ. Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  26. Drozdov, I. K. et al. Phase diagram of Bi2Sr2CaCu2O8 + δ revisited. Nat. Commun. 9, 5210 (2018).

    Article  ADS  Google Scholar 

  27. He, Y. et al. Fermi surface and pseudogap evolution in a cuprate superconductor. Science 344, 608–611 (2014).

    Article  ADS  Google Scholar 

  28. Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).

    Article  ADS  Google Scholar 

  29. Valla, T., Drozdov, I. K. & Gu, G. D. Disappearance of superconductivity due to vanishing coupling in the overdoped Bi2Sr2CaCu2O8 + δ. Nat. Commun. 11, 569 (2020).

    Article  ADS  Google Scholar 

  30. Jenkins, N. et al. Imaging the essential role of spin fluctuations in high-Tc superconductivity. Phys. Rev. Lett. 103, 227001 (2009).

    Article  ADS  Google Scholar 

  31. Zou, C. et al. Effect of structural supermodulation on superconductivity in trilayer cuprate Bi2Sr2Ca2Cu3O10 + δ. Phys. Rev. Lett. 124, 047003 (2020).

    Article  ADS  Google Scholar 

  32. Hao, Z. et al. Anomalous doping evolution of superconductivity and quasiparticle interference in Bi2Sr2Ca2Cu3O10 + δ trilayer cuprates. Phys. Rev. Lett. 125, 237005 (2020).

    Article  ADS  Google Scholar 

  33. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8 + δ. Science 309, 1048–1052 (2005).

    Article  ADS  Google Scholar 

  34. Hanaguri, T. et al. Coherence factors in a high-Tc cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    Article  ADS  Google Scholar 

  35. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

    Article  ADS  Google Scholar 

  36. Gu, Q. et al. Directly visualizing the sign change of d-wave superconducting gap in Bi2Sr2CaCu2O8 + δ by phase-referenced quasiparticle interference. Nat. Commun. 10, 1603 (2019).

    Article  ADS  Google Scholar 

  37. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8 + δ. Nature 454, 1072–1078 (2008).

    Article  ADS  Google Scholar 

  38. He, R.-H. et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331, 1579–1583 (2011).

    Article  ADS  Google Scholar 

  39. Li, X. et al. Quasiparticle interference and charge order in a heavily overdoped non-superconducting cuprate. N. J. Phys. 20, 063041 (2018).

    Article  Google Scholar 

  40. Miao, H. et al. Charge density waves in cuprate superconductors beyond the critical doping. npj Quantum Mater. 6, 31 (2021).

    Article  ADS  Google Scholar 

  41. Zeljkovic, I. et al. Imaging the impact of single oxygen atoms on superconducting Bi2 + ySr2 − yCaCu2O8 + x. Science 337, 320–323 (2012).

    Article  ADS  Google Scholar 

  42. Vishik, I. M. et al. A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8 + δ. Nat. Phys. 5, 718–721 (2009).

    Article  Google Scholar 

  43. Li, H. et al. Four-legged starfish-shaped Cooper pairs with ultrashort antinodal length scales in cuprate superconductors. Preprint at https://arxiv.org/abs/1809.02194 (2018).

  44. Li, Z.-X., Kivelson, S. A. & Lee, D.-H. Superconductor-to-metal transition in overdoped cuprates. npj Quantum Mater. 6, 36 (2021).

    Article  ADS  Google Scholar 

  45. Liang, B., Bernhard, C., Wolf, T. & Lin, C. T. Phase evolution, structural and superconducting properties of Pb-free Bi2Sr2Ca2Cu3O10 + δ single crystals. Supercond. Sci. Technol. 17, 731–738 (2004).

    Article  ADS  Google Scholar 

  46. Piriou, A., Fasano, Y., Giannini, E. & Fischer, O. Effect of oxygen-doping on Bi2Sr2Ca2Cu3O10 + δ vortex matter: crossover from electromagnetic to Josephson interlayer coupling. Phys. Rev. B 77, 184508 (2008).

    Article  ADS  Google Scholar 

  47. Vincini, G. et al. Double pair breaking peak in Raman scattering spectra of the triple-layer cuprate Bi2Sr2Ca2Cu3O10 + z. Phys. Rev. B 98, 144503 (2018).

    Article  ADS  Google Scholar 

  48. Ye, C. et al. Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator. Nat. Commun. 4, 1365 (2013).

    Article  ADS  Google Scholar 

  49. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. K. Lee, T. Li, Q. H. Wang, Z. Y. Weng and T. Xiang for helpful discussions. This work was supported by the Basic Science Center Project of NSFC under grant no. 51788104, the MOST of China (grants nos. 2017YFA0302900 and 2016YFA0300300), NSFC grants nos. 11888101 and 11534007, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB25000000). D.-H.L. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, contract no. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202). D.-H.L. also acknowledges support from the Gordon and Betty Moore Foundation’s EPIC initiative (grant no. GBMF4545). This work is supported in part by the Beijing Advanced Innovation Center for Future Chip (ICFC) and the Tencent Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., Z.H. and Y.W. proposed and designed the research. C.Z., Z.H. and M.X. carried out the STM experiments. C.Z. analysed the data with help from Z.H., P.C., S.Y. and X. Li. C.L. provided the Bi-2223 single crystals. X. Luo and X.Z. performed high-pressure oxygen annealing of Bi-2223 samples. Q.G. and X.Z. grew the Bi-2212 single crystals and performed the post-annealing. D.-H.L. provided theoretical analysis. C.Z., D.-H.L. and Y.W. prepared the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yayu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks José Lorenzana, Mohammad H. Hamidian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–11 and Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Hao, Z., Luo, X. et al. Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates. Nat. Phys. 18, 551–557 (2022). https://doi.org/10.1038/s41567-022-01534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01534-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing