Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discrete symmetry breaking defines the Mott quartic fixed point

Abstract

Because Fermi liquids are inherently non-interacting states of matter, all electronic levels below the chemical potential are doubly occupied. Consequently, the simplest way of breaking the Fermi-liquid theory is to engineer a model in which some of those states are singly occupied, keeping time-reversal invariance intact. We show that breaking an overlooked1 local-in-momentum space \({{\mathbb{Z}}}_{2}\) symmetry of a Fermi liquid does precisely this. As a result, although the Mott transition from a Fermi liquid is correctly believed to arise without breaking any continuous symmetry, a discrete symmetry is broken. This symmetry breaking serves as an organizing principle for Mott physics whether it arises from the tractable Hatsugai–Kohmoto model or the intractable Hubbard model. Through a renormalization-group analysis, we establish that both are controlled by the same fixed point. An experimental manifestation of this fixed point is the onset of particle–hole asymmetry, a widely observed2,3,4,5,6,7,8,9,10 phenomenon in strongly correlated systems. Theoretically, the singly occupied region of the spectrum gives rise to a surface of zeros of the single-particle Green function, denoted as the Luttinger surface. Using K-homology, we show that the Bott topological invariant guarantees the stability of this surface to local perturbations. Our proof demonstrates that the strongly coupled fixed point only corresponds to those Luttinger surfaces with co-dimension p + 1 with odd p. We conclude that both Hubbard and Hatsugai–Kohmoto models lie in the same high-temperature universality class and are controlled by a quartic fixed point with broken \({{\mathbb{Z}}}_{2}\) symmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of Hubbard and HK Models.
Fig. 2: Möbius bundles.
Fig. 3: Hubbard–HK comparison.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson, P. W. & Haldane, F. D. M. The symmetries of fermion fluids at low dimensions. J. Stat. Phys. 103, 425–428 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, C. T. et al. Electronic states in La2−xSrxCuO4+δ probed by soft-X-ray absorption. Phys. Rev. Lett. 66, 104 (1991).

    Article  ADS  Google Scholar 

  3. Eskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035 (1991).

    Article  ADS  Google Scholar 

  4. Phillips, P. Colloquium: identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719 (2010).

    Article  ADS  Google Scholar 

  5. Kohno, M. Mott transition in the two-dimensional Hubbard model. Phys. Rev. Lett. 108, 076401 (2012).

    Article  ADS  Google Scholar 

  6. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

  7. Silva, J. B. et al. Particle-hole asymmetry in the two-impurity Kondo model. Phys. Rev. Lett. 76, 275 (1996).

    Article  ADS  Google Scholar 

  8. Ghosh, S. S., Quan, Y. & Pickett, W. E. Strong particle-hole asymmetry in a 200 kelvin superconductor. Phys. Rev. B 100, 094521 (2019).

    Article  ADS  Google Scholar 

  9. Randeria, M., Sensarma, R., Trivedi, N. & Zhang, F.-C. Particle-hole asymmetry in doped Mott insulators: implications for tunneling and photoemission spectroscopies. Phys. Rev. Lett. 95, 137001 (2005).

    Article  ADS  Google Scholar 

  10. Anderson, P. & Ong, N. Theory of asymmetric tunneling in the cuprate superconductors. J. Phys. Chem. Solids 67, 1–5 (2006).

    Article  Google Scholar 

  11. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2. Nature 430, 1001–1005 (2004).

    Article  Google Scholar 

  12. Miller, T. L., Zhang, W., Eisaki, H. & Lanzara, A. Particle-hole asymmetry in the cuprate pseudogap measured with time-resolved spectroscopy. Phys. Rev. Lett. 118, 097001 (2017).

    Article  ADS  Google Scholar 

  13. Anderson, P. W. Last words on the cuprates. Preprint at https://arxiv.org/abs/1612.03919 (2016).

  14. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  15. Hatsugai, Y. & Kohmoto, M. Exactly solvable model of correlated lattice electrons in any dimensions. J. Phys. Soc. Jpn 61, 2056–2069 (1992).

    MathSciNet  Google Scholar 

  16. Phillips, P. W., Yeo, L. & Huang, E. W. Exact theory for superconductivity in a doped Mott insulator. Nat. Phys. 16, 1175–1180 (2020).

    Article  Google Scholar 

  17. Baskaran, G. An exactly solvable fermion model: spinons, holons and a non-Fermi liquid phase. Mod. Phys. Lett. B 05, 643–649 (1991).

    Article  Google Scholar 

  18. Hořava, P. Stability of Fermi surfaces and K theory. Phys. Rev. Lett. 95, 016405 (2005).

  19. Setty, C. Superconductivity from Luttinger surfaces: emergent Sachdev-Ye-Kitaev physics with infinite-body interactions. Phys. Rev. B 103, 014501 (2021).

    Article  ADS  Google Scholar 

  20. Dzyaloshinskii, I. Some consequences of the Luttinger theorem: the Luttinger surfaces in non-Fermi liquids and Mott insulators. Phys. Rev. B 68, 085113 (2003).

    Article  ADS  Google Scholar 

  21. Polchinski, J. Effective field theory and the Fermi surface. Preprint at https://arxiv.org/abs/hep-th/9210046 (1992).

  22. Weinberg, S. Preface to volume II. in The Quantum Theory of Fields Vol. 2 XVII–XIX (Cambridge Univ. Press, 1996).

  23. Weinberg, S. Effective action and renormalization group flow of anisotropic superconductors. Nucl. Phys. B 413, 567–578 (1994).

    Article  Google Scholar 

  24. Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994).

    Article  ADS  Google Scholar 

  25. Anderson, P. W. Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  26. Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  27. Kitaev, A. In Advances in Theoretical Physics: Landau Memorial Conference (eds. Lebedev, V. and Feigel’Man, M. 1134, 22–30 (American Institute of Physics Conference Series, 2009).

  28. Morimoto, T. & Nagaosa, N. Weyl Mott insulator. Sci. Rep. 6, 19853 (2016).

    Article  ADS  Google Scholar 

  29. Stanescu, T. D. & Kotliar, G. Fermi arcs and hidden zeros of the Green function in the pseudogap state. Phys. Rev. B 74, 125110 (2006).

    Article  ADS  Google Scholar 

  30. Sakai, S., Motome, Y. & Imada, M. Evolution of electronic structure of doped Mott insulators: reconstruction of poles and zeros of Green’s function. Phys. Rev. Lett. 102, 056404 (2009).

    Article  ADS  Google Scholar 

  31. Rosch, A. Breakdown of Luttinger’s theorem in two-orbital Mott insulators. Eur. Phys. J. B 59, 495–502 (2007).

    Article  Google Scholar 

  32. Dave, K. B., Phillips, P. W. & Kane, C. L. Absence of Luttinger’s theorem due to zeros in the single-particle Green function. Phys. Rev. Lett. 110, 090403 (2013).

    Article  ADS  Google Scholar 

  33. Bott, R. An application of the Morse theory to the topology of lie-groups. Bull. Soc. Math. Fr. 84, 251–281 (1956).

    MathSciNet  MATH  Google Scholar 

  34. Atiyah, M., Bott, R. & Shapiro, A. Clifford modules. Topology 3, 3–38 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  35. Luttinger, J. M. Fermi surface and some simple equilibrium properties of a system of interacting fermions. Phys. Rev. 119, 1153 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

P.W.P. thanks D. Gross for a probing question, asked during a KITP online seminar, regarding the renormalization of non-local interactions that ultimately inspired this work, DMR-2111379 for partial funding of this project and M. Kaplan-Hartnett and Janice Benner for assistance with Fig. 2. E.W.H. was supported by the Gordon and Betty Moore Foundation EPiQS Initiative through the grants GBMF 4305 and GBMF 8691.

Author information

Authors and Affiliations

Authors

Contributions

Edwin W. Huang (numerics and conception), Gabriele La Nave (conception), Philip W. Phillips (conception and writing of manuscript). Edwin W. Huang, Gabriele La Nave and Philip W. Phillips contributed equally.

Corresponding author

Correspondence to Philip W. Phillips.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, E.W., Nave, G.L. & Phillips, P.W. Discrete symmetry breaking defines the Mott quartic fixed point. Nat. Phys. 18, 511–516 (2022). https://doi.org/10.1038/s41567-022-01529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01529-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing