Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene

Abstract

Two-dimensional electron systems subjected to a perpendicular magnetic field absorb electromagnetic radiation via cyclotron resonance (CR). Here we report a qualitative deviation from this well-known behaviour in graphene. Our measurements of the terahertz photoresponse reveal a resonant burst at the main overtone of the CR that exceeds the signal detected at the position of the ordinary CR. The dependencies of photoresponse on the magnetic field, doping level and sample geometry suggest that the origin of this anomaly lies in the near-field magnetoabsorption facilitated by the Bernstein modes—ultraslow magnetoplasmonic excitations reshaped by non-local electron dynamics. Close to CR harmonics, these modes are characterized by a flat dispersion and diverging plasmonic density of states that amplify radiation absorption. Besides carrying fundamental interest, our results show that radiation absorption via non-local collective modes can facilitate a strong photoresponse—a behaviour potentially useful for infrared and terahertz technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anomalous THz photoresponse of doped graphene.
Fig. 2: CR overtones in photovoltage and photoresistance.
Fig. 3: Non-local THz magnetoabsorption in graphene.

Similar content being viewed by others

Data availability

The data reported in Figs. 13 can be found on Zenodo (https://doi.org/10.5281/zenodo.5758483). The other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  2. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  3. Gusikhin, P. A., Muravev, V. M., Zagitova, A. A. & Kukushkin, I. V. Drastic reduction of plasmon damping in two-dimensional electron disks. Phys. Rev. Lett. 121, 176804 (2018).

    Article  ADS  Google Scholar 

  4. Geiser, M. et al. Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. Phys. Rev. Lett. 108, 106402 (2012).

    Article  ADS  Google Scholar 

  5. Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  Google Scholar 

  6. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  7. Reserbat-Plantey, A. et al. Quantum nanophotonics in two-dimensional materials. ACS Photonics 8, 85–101 (2021).

    Article  Google Scholar 

  8. Silveiro, I., Ortega, J. M. P. & de Abajo, F. J. G. Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light Sci. Appl. 4, e241 (2015).

    Article  Google Scholar 

  9. Muravev, V. M. & Kukushkin, I. V. Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. App. Phys. Lett. 100, 082102 (2012).

    Article  ADS  Google Scholar 

  10. Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018).

    Article  ADS  Google Scholar 

  11. Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    Article  ADS  Google Scholar 

  12. Gonçalves, P. A. D. et al. Quantum surface-response of metals revealed by acoustic graphene plasmons. Nat. Commun. 12, 3271 (2021).

    Article  ADS  Google Scholar 

  13. Rostami, H., Katsnelson, M. I. & Polini, M. Theory of plasmonic effects in nonlinear optics: the case of graphene. Phys. Rev. B 95, 035416 (2017).

    Article  ADS  Google Scholar 

  14. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  ADS  Google Scholar 

  15. Pendry, J. B., Huidobro, P. A., Luo, Y. & Galiffi, E. Compacted dimensions and singular plasmonic surfaces. Science 358, 915–917 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  ADS  Google Scholar 

  17. Koshelev, K. L. & Bogdanov, A. A. Interplay between anisotropy and spatial dispersion in metamaterial waveguides. Phys. Rev. B 94, 115439 (2016).

    Article  ADS  Google Scholar 

  18. Nehls, J. et al. Direct manifestation of the Fermi pressure in a two-dimensional electron system. Phys. Rev. B 54, 7651–7653 (1996).

    Article  ADS  Google Scholar 

  19. Koitzsch, A. et al. Nonlocal dielectric function and nested dark excitons in MoS2. npj 2D Mater. Appl. 3, 41 (2019).

    Article  Google Scholar 

  20. Chiu, K. W. & Quinn, J. J. Plasma oscillations of a two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 9, 4724–4732 (1974).

    Article  ADS  Google Scholar 

  21. Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  ADS  Google Scholar 

  22. Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012).

    Article  ADS  Google Scholar 

  23. Bernstein, I. B. Waves in a plasma in a magnetic field. Phys. Rev. 109, 10–21 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sitenko, A. & Stepanov, K. On the oscillations of an electron plasma in a magnetic field. Soviet Phys. JETP 4, 512 (1957).

    MathSciNet  MATH  Google Scholar 

  25. Batke, E., Heitmann, D., Kotthaus, J. P. & Ploog, K. Nonlocality in the two-dimensional plasmon dispersion. Phys. Rev. Lett. 54, 2367–2370 (1985).

    Article  ADS  Google Scholar 

  26. Gudmundsson, V. et al. Bernstein modes in quantum wires and dots. Phys. Rev. B 51, 17744–17754 (1995).

    Article  ADS  Google Scholar 

  27. Batke, E., Heitmann, D. & Tu, C. W. Plasmon and magnetoplasmon excitation in two-dimensional electron space-charge layers on GaAs. Phys. Rev. B 34, 6951–6960 (1986).

    Article  ADS  Google Scholar 

  28. Holland, S. et al. Quantized dispersion of two-dimensional magnetoplasmons detected by photoconductivity spectroscopy. Phys. Rev. Lett. 93, 186804 (2004).

    Article  ADS  Google Scholar 

  29. Roldán, R., Goerbig, M. O. & Fuchs, J.-N. Theory of Bernstein modes in graphene. Phys. Rev. B 83, 205406 (2011).

    Article  ADS  Google Scholar 

  30. Volkov, V. A. & Zabolotnykh, A. A. Bernstein modes and giant microwave response of a two-dimensional electron system. Phys. Rev. B 89, 121410 (2014).

    Article  ADS  Google Scholar 

  31. Dai, Y., Du, R. R., Pfeiffer, L. N. & West, K. W. Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells. Phys. Rev. Lett. 105, 246802 (2010).

    Article  ADS  Google Scholar 

  32. Hatke, A. T., Zudov, M. A., Pfeiffer, L. N. & West, K. W. Giant microwave photoresistivity in high-mobility quantum Hall systems. Phys. Rev. B 83, 121301 (2011).

    Article  ADS  Google Scholar 

  33. Dorozhkin, S. I., Kapustin, A. A., Umansky, V. & Smet, J. H. Absorption of microwave radiation by two-dimensional electron systems associated with the excitation of dimensional Bernstein mode resonances. JETP Lett. 113, 670–675 (2021).

    Article  ADS  Google Scholar 

  34. Chaplik, A. V. & Heitmann, D. Geometric resonances of two-dimensional magnetoplasmons. J. Phys. C: Solid State Phys. 18, 3357–3363 (1985).

    Article  ADS  Google Scholar 

  35. Bangert, D. E., Stuart, R. J., Hughes, H. P., Ritchie, D. A. & Frost, J. E. F. Bernstein modes in grating-coupled 2DEGs. Semicond. Sci. Technol. 11, 352–359 (1996).

    Article  ADS  Google Scholar 

  36. Białek, M., Łusakowski, J., Czapkiewicz, M., Wróbel, J. & Umansky, V. Photoresponse of a two-dimensional electron gas at the second harmonic of the cyclotron resonance. Phys. Rev. B 91, 045437 (2015).

    Article  ADS  Google Scholar 

  37. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  ADS  Google Scholar 

  38. Mönch, E. et al. Observation of terahertz-induced magnetooscillations in graphene. Nano Lett. 20, 5943–5950 (2020).

    Article  ADS  Google Scholar 

  39. Fal’ko, V. I. & Khmel’nitskii, D. E. What if a film conductivity exceeds the speed of light? Soviet Phys. JETP 68, 1150–1152 (1989).

    ADS  Google Scholar 

  40. Mikhailov, S. A. Microwave-induced magnetotransport phenomena in two-dimensional electron systems: importance of electrodynamic effects. Phys. Rev. B 70, 165311 (2004).

    Article  ADS  Google Scholar 

  41. Andreev, I. V., Muravev, V. M., Belyanin, V. N. & Kukushkin, I. V. Measurement of cyclotron resonance relaxation time in the two-dimensional electron system. Appl. Phys. Lett. 105, 202106 (2014).

    Article  Google Scholar 

  42. Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article  ADS  Google Scholar 

  43. Alekseev, P. S. & Alekseeva, A. P. Transverse magnetosonic waves and viscoelastic resonance in a two-dimensional highly viscous electron fluid. Phys. Rev. Lett. 123, 236801 (2019).

    Article  ADS  Google Scholar 

  44. Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    Article  ADS  Google Scholar 

  45. Dmitriev, I. A., Mirlin, A. D., Polyakov, D. G. & Zudov, M. A. Nonequilibrium phenomena in high Landau levels. Rev. Mod. Phys. 84, 1709–1763 (2012).

    Article  ADS  Google Scholar 

  46. Orlita, M. et al. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene. Phys. Rev. Lett. 107, 216603 (2011).

    Article  ADS  Google Scholar 

  47. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    Article  ADS  Google Scholar 

  48. Muravev, V. M., Gusikhin, P. A., Andreev, I. V. & Kukushkin, I. V. Ultrastrong coupling of high-frequency two-dimensional cyclotron plasma mode with a cavity photon. Phys. Rev. B 87, 045307 (2013).

    Article  ADS  Google Scholar 

  49. Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article  ADS  Google Scholar 

  50. Levitov, L. S., Shtyk, A. V. & Feigelman, M. V. Electron-electron interactions and plasmon dispersion in graphene. Phys. Rev. B 88, 235403 (2013).

    Article  ADS  Google Scholar 

  51. Sherafati, M., Principi, A. & Vignale, G. Hall viscosity and electromagnetic response of electrons in graphene. Phys. Rev. B 94, 125427 (2016).

    Article  ADS  Google Scholar 

  52. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  ADS  Google Scholar 

  53. Ziemann, E., Ganichev, S. D., Prettl, W., Yassievich, I. N. & Perel, V. I. Characterization of deep impurities in semiconductors by terahertz tunneling ionization. J. Appl. Phys. 87, 3843–3849 (2000).

    Article  ADS  Google Scholar 

  54. Olbrich, P. et al. Terahertz ratchet effects in graphene with a lateral superlattice. Phys. Rev. B 93, 075422 (2016).

    Article  ADS  Google Scholar 

  55. Dantscher, K.-M. et al. Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators. Phys. Rev. B 95, 201103 (2017).

    Article  ADS  Google Scholar 

  56. Kozlov, D. A., Kvon, Z. D., Mikhailov, N. N., Dvoretskii, S. A. & Portal, J. C. Cyclotron resonance in a two-dimensional semimetal based on a HgTe quantum well. JETP Lett. 93, 170–173 (2011).

    Article  Google Scholar 

  57. Svintsov, D. Hydrodynamic-to-ballistic crossover in Dirac materials. Phys. Rev. B 97, 121405 (2018).

    Article  ADS  Google Scholar 

  58. Hallén, E. Properties of a long antenna. J. Appl. Phys. 19, 1140–1147 (1948).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

E.M., K.L., I.A.D. and S.D.G. acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project ID 314695032 and SFB 1277 (Subproject A04). I.A.D. acknowledges DFG support via grant DM 1/5-1. Work at MIT was partly supported through AFOSR grant FA9550-21-1-0319, NSF QII-TAQS program (grant 1936263) and Gordon and Betty Moore Foundation EPiQS Initiative through grant GBMF9643 to P.J.-H. D.A.B. acknowledges support from the MIT Pappalardo Fellowship. I.Y.P. acknowledges support from the MIT undergraduate research opportunities program and the Johnson & Johnson research scholars program. Support from the Materials Engineering and Processing program of the National Science Foundation under award no. CMMI 1538127 for hBN crystal growth is also greatly appreciated. The work of D.S. was supported by the Foundation for Advancement of Theoretical Physics ‘Basis’ under grant no. 20-1-3-43-1. K.K. and D.S. acknowledge financial support from the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-606). We thank L. Levitov, C. Collignon, A. Berdyugin, A. Principi, A. Bogdanov and A. A. Zibrov for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.A.B., D.S. and S.D.G conceived and designed the project. E.M., D.A.B. and K.L. performed the transport and photoresponse measurements at the University of Regensburg. D.A.B. and I.Y.P. fabricated the devices. D.A.B., E.M., I.A.D. and D.S. analysed the experimental data with help from P.J.-H. and S.D.G. K.K. and D.S. developed the theoretical model and performed the magnetoabsorption calculations. S.L. and J.H.E. provided the high-quality hBN crystals. D.A.B., I.A.D., E.M. and D.S. wrote the manuscript, with input from all the co-authors. P.J.-H. and S.D.G. supervised the project. All the authors contributed to discussions.

Corresponding authors

Correspondence to D. A. Bandurin, D. Svintsov or S. D. Ganichev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Sections 1–10 and refs. 1–23.

Supplementary Video 1

Emergence of BMs from magnetoplasmons and calculated magnetoabsorption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurin, D.A., Mönch, E., Kapralov, K. et al. Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene. Nat. Phys. 18, 462–467 (2022). https://doi.org/10.1038/s41567-021-01494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01494-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing