Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological dissipation in a time-multiplexed photonic resonator network

Abstract

Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge purely in a system’s dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator network, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topological protection of the network’s quality factor. The topologically non-trivial dissipation of our system exposes new opportunities to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future work in the study of synthetic dimensions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological dissipation and time-multiplexed resonator networks.
Fig. 2: Realizing 1D and 2D synthetic lattices with switchable boundary conditions in a time-multiplexed resonator network.
Fig. 3: Observations of the SSH edge state and topological phase transition.
Fig. 4: Robustness of the dissipative SSH edge state and its quality factor.
Fig. 5: Measurements of the SSH band structure.
Fig. 6: Measurement of the HH edge state and its localization.

Data availability

The data used to generate the plots and results in this paper is available on the Caltech Research Data Repository (https://doi.org/10.22002/D1.2202). Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used to analyse and plot the data in this paper is available on the Caltech Research Data Repository (https://doi.org/10.22002/D1.2202). The other code supporting the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Hasan, M. & Kane, C. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. Cooper, N., Dalibard, J. & Spielman, I. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  4. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  5. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Metelmann, A. & Clerk, A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  7. Mukherjee, S. et al. Dissipatively coupled waveguide networks for coherent diffusive photonics. Nat. Commun. 8, 1909 (2017).

    Article  ADS  Google Scholar 

  8. Ding, J., Belykh, I., Marandi, A. & Miri, M.-A. Dispersive versus dissipative coupling for frequency synchronization in lasers. Phys. Rev. Appl. 12, 054039 (2019).

    Article  ADS  Google Scholar 

  9. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  ADS  Google Scholar 

  10. Haus, H. Mode-locking of lasers. IEEE J. Sel. Topics Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  11. Wright, L. G. et al. Mechanisms of spatiotemporal mode-locking. Nat. Phys. 16, 565–570 (2020).

    Google Scholar 

  12. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

    Article  Google Scholar 

  13. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article  ADS  Google Scholar 

  14. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Article  ADS  Google Scholar 

  15. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  16. Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    Article  ADS  Google Scholar 

  17. Gneiting, C., Koottandavida, A., Rozhkov, A. V. & Nori, F. Unraveling the topology of dissipative quantum systems. Preprint at https://arxiv.org/abs/2007.05960 (2020).

  18. Dasbiswas, K., Mandadapu, K. K. & Vaikuntanathan, S. Topological localization in out-of-equilibrium dissipative systems. Proc. Natl Acad. Sci. USA 115, E9031–E9040 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, M., Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Topological phases and nonreciprocal edge states in non-Hermitian Floquet insulators. Phys. Rev. B 100, 045423 (2019).

    Article  ADS  Google Scholar 

  20. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article  ADS  Google Scholar 

  21. Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).

    Article  ADS  Google Scholar 

  22. Maczewsky, L. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  23. Xia, S. et al. Nonlinear tuning of PT-symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article  ADS  Google Scholar 

  24. Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    Article  ADS  Google Scholar 

  25. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  Google Scholar 

  26. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Bardyn, C.-E. et al. Topology by dissipation. New J. Phys. 15, 085001 (2013).

    Article  ADS  MATH  Google Scholar 

  28. Yoshida, T. & Hatsugai, Y. Bulk edge correspondence of classical diffusion phenomena. Sci. Rep. 11, 888 (2021).

    Article  Google Scholar 

  29. Ozawa, T. & Price, H. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  30. Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018).

    Article  ADS  Google Scholar 

  31. Wimmer, M., Price, H., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article  Google Scholar 

  32. Chen, C. et al. Observation of topologically protected edge states in a photonic two- dimensional quantum walk. Phys. Rev. Lett. 121, 100502 (2018).

    Article  ADS  Google Scholar 

  33. Chalabi, H. et al. Synthetic gauge field for two-dimensional time-multiplexed quantum random walks. Phys. Rev. Lett. 123, 150503 (2019).

    Article  ADS  Google Scholar 

  34. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article  ADS  Google Scholar 

  35. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  ADS  Google Scholar 

  36. Zeuner, J. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  ADS  Google Scholar 

  37. Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    Article  ADS  Google Scholar 

  38. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  39. Hofstadter, D. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article  ADS  Google Scholar 

  40. Harper, P. G. The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proc. Phys. Soc. A 68, 879 (1955).

    Article  ADS  MATH  Google Scholar 

  41. Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971–977 (2011).

    Article  Google Scholar 

  42. Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling. Optica 4, 1433–1436 (2017).

    Article  ADS  Google Scholar 

  43. Asbóth, J., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators 1st edn (Springer, 2016).

  44. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  Google Scholar 

  45. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  46. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  47. Zhang, S.-C. & Hu, J. A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001).

    Article  ADS  Google Scholar 

  48. Petrides, I., Price, H. M. & Zilberberg, O. Six-dimensional quantum Hall effect and three-dimensional topological pumps. Phys. Rev. B 98, 125431 (2018).

    Article  ADS  Google Scholar 

  49. Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58 (2018).

    Article  ADS  Google Scholar 

  50. Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    Article  ADS  Google Scholar 

  51. Wang, K. et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl. 9, 132 (2020).

    Article  ADS  Google Scholar 

  52. Fang, K. & Fan, S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013).

    Article  ADS  Google Scholar 

  53. Helbig, T. et al. Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article  Google Scholar 

  54. Parto, M., Liu, Y., Bahari, B., Khajavikhan, M. & Christodoulides, D. Non-Hermitian and topological photonics: optics at an exceptional point. Appl. Phys. Rev. 10, 403–423 (2020).

    Google Scholar 

  55. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  56. Yuan, L., Xiao, M., Lin, Q. & Fan, S. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018).

    Article  ADS  Google Scholar 

  57. Aster, R. C., Borchers, B. & Thurber, C. H. Parameter Estimation and Inverse Problems 2nd edn (Elsevier Science and Technology, 2013).

Download references

Acknowledgements

We are grateful to M. Fraser and A. Szameit for their insights. We acknowledge support from ARO grant no. W911NF-18-1-0285 and NSF grant nos. 1846273 and 1918549. S.F. acknowledges support of a Vannevar Bush Faculty Fellowship from the US Department of Defense (grant no. N00014-17-1-3030). L.Y. acknowledges support of the National Natural Science Foundation of China (11974245). F.N. acknowledges support from ARO (W911NF-18-1-0358), JST-CREST (JPMJCR1676), JSPS (JP20H00134), AOARD (FA2386-20-1-4069) and FQXi (FQXi-IAF19-06). We wish to thank NTT Research for their financial and technical support.

Author information

Authors and Affiliations

Authors

Contributions

C.L., A.D. and A.M. devised the experiments and the underlying theory. C.L., A.D. and J.W. constructed and performed the experiments. C.L. collected and analysed the data. M.P. contributed to the theoretical analysis. L.Y. conceived the experiment. S.F. and F.N. provided additional insights and guidance. All the authors discussed the results and contributed to the writing of the manuscript. A.M. supervised the project.

Corresponding author

Correspondence to Alireza Marandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Yaakov Lumer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Sections 1–8.

Source data

Source Data Fig. 5

A compressed file containing the processed data plotted in Fig. 5b,c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leefmans, C., Dutt, A., Williams, J. et al. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys. 18, 442–449 (2022). https://doi.org/10.1038/s41567-021-01492-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01492-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing