Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions

This article has been updated

Abstract

Spin–orbit coupling is an essential mechanism underlying quantum phenomena such as the spin Hall effect and topological insulators1. It has been widely studied in well-isolated Hermitian systems, but much less is known about the role dissipation plays in spin–orbit-coupled systems2. Here we implement dissipative spin–orbit-coupled bands filled with ultracold fermions, and observe parity-time symmetry breaking as a result of the competition between the spin–orbit coupling and dissipation. Tunable dissipation, introduced by state-selective atom loss, enables us to tune the energy gap and close it at the critical dissipation value, the so-called exceptional point3. In the vicinity of the critical point, the state evolution exhibits a chiral response, which enables us to tune the spin–orbit coupling and dissipation dynamically, revealing topologically robust chiral spin transfer when the quantum state encircles the exceptional point. This demonstrates that we can explore non-Hermitian topological states with spin–orbit coupling.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Non-Hermitian spin–orbit-coupled system of ultracold atoms.
Fig. 2: Momentum-resolved Rabi spectroscopy for observing band merging.
Fig. 3: \({{{\mathcal{PT}}}}\) symmetry-breaking transition and band closing at the EP.
Fig. 4: Topological chiral spin transfer by dynamically encircling an EP.

Data availability

The data that support the findings of this work are available from the corresponding authors upon reasonable request.

Change history

  • 28 January 2022

    In the version of the Supplementary Information originally published, there was a typo in the caption to Figure S1. The error has been amended and the Supplementary Information now replaced.

References

  1. Hasan, M. & Kane, C. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phy. 69, 249–435 (2020).

    Article  ADS  Google Scholar 

  3. Miri, M.-A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet  MATH  Article  Google Scholar 

  4. Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    Article  ADS  Google Scholar 

  5. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    Google Scholar 

  6. Yao, S., Song, F. & Wang, Z. Non-Hermitian Chern bands. Phys. Rev. Lett. 121, 136802 (2018).

    Article  ADS  Google Scholar 

  7. Helbig, T. et al. Generalized bulk-boundary correspondence in non-Hermitian topoelectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article  Google Scholar 

  8. Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article  Google Scholar 

  9. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  10. Lin, Y.-J., Jimenez-Garcia, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  11. Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

    Article  ADS  Google Scholar 

  12. Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

    Article  ADS  Google Scholar 

  13. Huang, L. et al. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016).

    Article  Google Scholar 

  14. Wu, Z. et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 354, 83–88 (2016).

    Article  ADS  Google Scholar 

  15. Song, B. et al. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv. 4, eaao4748 (2018).

    Article  ADS  Google Scholar 

  16. Song, B. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15, 911–916 (2019).

    Article  Google Scholar 

  17. Wang, Z.-Y. et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling. Science 372, 271–276 (2021).

    Article  ADS  Google Scholar 

  18. Yamamoto, K. et al. Theory of non-Hermitian fermionic superfluidity with a complex-valued interaction. Phys. Rev. Lett. 123, 123601 (2019).

    Article  ADS  Google Scholar 

  19. Lazarides, A., Roy, S., Piazza, F. & Moessner, R. Time crystallinity in dissipative Floquet systems. Phys. Rev. Res. 2, 022002 (2020).

    Article  Google Scholar 

  20. Luo, X.-W. & Zhang, C. Higher-order topological corner states induced by gain and loss. Phys. Rev. Lett. 123, 073601 (2019).

    MathSciNet  Article  ADS  Google Scholar 

  21. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  ADS  Google Scholar 

  22. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article  ADS  Google Scholar 

  23. Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).

    Article  ADS  Google Scholar 

  24. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Article  ADS  Google Scholar 

  25. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    Article  ADS  Google Scholar 

  26. Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article  ADS  Google Scholar 

  27. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  Google Scholar 

  28. Minganti, F., Miranowicz, A., Chhajlany, R. W. & Nori, F. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps. Phys. Rev. A 100, 062131 (2019).

    Article  ADS  Google Scholar 

  29. Xiao, L. et al. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).

    Article  Google Scholar 

  30. Ozturk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).

    Article  ADS  Google Scholar 

  31. Naghiloo, M., Abbasi, M., Joglekar, Y. N. & Murch, K. W. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232–1236 (2019).

    Article  Google Scholar 

  32. Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin system. Science 364, 878–880 (2019).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  33. Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    Article  ADS  Google Scholar 

  34. Li, J. et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10, 855 (2019).

    Article  ADS  Google Scholar 

  35. Takasu, Y. et al. PT-symmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation. Prog. Theor. Exp. Phys. 2020, ptaa094 (2020).

    Article  Google Scholar 

  36. Liu, W., Wu, Y., Duan, C.-K., Rong, X. & Du, J. Dynamically encircling an exceptional point in a real quantum system. Phys. Rev. Lett. 126, 170506 (2021).

    Article  ADS  Google Scholar 

  37. Kofman, A. G. & Kurizki, G. Acceleration of quantum decay processes by frequent observations. Nature 405, 546–550 (2000).

    Article  ADS  Google Scholar 

  38. Mailybaev, A. A., Kirillov, O. N. & Seyranian, A. P. Geometric phase around exceptional points. Phys. Rev. A 72, 014104 (2005).

    Article  ADS  Google Scholar 

  39. Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A Math. Theor. 44, 435302 (2011).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  40. Wu, J. H., Artoni, M. & Rocca, G. C. L. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014).

    Article  ADS  Google Scholar 

  41. Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).

    Article  ADS  Google Scholar 

  42. Daley, A. J. Adv. Phys. 63, 77 (2014).

  43. Zhou, L., Yi, W. & Cui, X. Dissipation-facilitated molecules in a Fermi gas with non-Hermitian spin-orbit coupling. Phys. Rev. A 102, 043310 (2020).

    Article  ADS  Google Scholar 

  44. Deffner, S. & Saxena, A. Jarzynski equality in PT-symmetric quantum mechanics. Phys. Rev. Lett. 114, 150601 (2015).

    MathSciNet  Article  ADS  Google Scholar 

  45. Kawabata, K., Ashida, Y. & Ueda, M. Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 119, 190401 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.-B.J. acknowledges support from the RGC and the Croucher Foundation through grants nos. 16305317, 16304918, 16306119, 16302420, C 6005-17G and N-HKUST601/17. G.-B.J is further supported by the Harilela foundation. J.L. acknowledges support from the RGC through grants nos. 16304520 and C6013-18G.

Author information

Authors and Affiliations

Authors

Contributions

Z.R., E.Z., C.H. and K.K.P. carried out the experiment and data analysis and helped with numerical calculations. D.L. performed theoretical calculations. G.-B.J. and J.L. and supervised the research.

Corresponding authors

Correspondence to Jensen Li or Gyu-Boong Jo.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature Physics thanks Wei Yi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Liu, D., Zhao, E. et al. Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions. Nat. Phys. 18, 385–389 (2022). https://doi.org/10.1038/s41567-021-01491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01491-x

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing