Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Present status and future challenges of non-interferometric tests of collapse models

Abstract

The superposition principle is the cornerstone of quantum mechanics, leading to a variety of genuinely quantum effects. Whether the principle applies also to macroscopic systems or, instead, there is a progressive breakdown when moving to larger scales is a fundamental and still open question. Spontaneous wavefunction collapse models predict the latter option, thus questioning the universality of quantum mechanics. Technological advances allow to increasingly challenge collapse models and the quantum superposition principle, with a variety of different experiments. Among them, non-interferometric experiments proved to be the most effective in testing these models. We provide an overview of such experiments, including cold atoms, optomechanical systems, X-ray detection, bulk heating and comparisons with cosmological observations. We also discuss avenues for future dedicated experiments, which aim at further testing collapse models and the validity of quantum mechanics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Testing the collapse effects using a typical non-interferometric setup.
Fig. 2: Exclusion plot for CSL parameters λ and rC from non-interferometric tests.
Fig. 3: Exclusion plot for DP parameter R0 from non-interferometric tests.

References

  1. Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Adler, S. Quantum Theory as an Emergent Phenomenon (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  3. Leggett, A. J. The quantum measurement problem. Science 307, 871–872 (2005).

    Article  ADS  Google Scholar 

  4. Weinberg, S. Collapse of the state vector. Phys. Rev. A 85, 062116 (2012).

    Article  ADS  Google Scholar 

  5. Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).

    Article  Google Scholar 

  6. Pearle, P. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989).

    Article  ADS  Google Scholar 

  7. Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987).

    Article  ADS  Google Scholar 

  9. Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys. Acta 63, 363–371 (1989).

    MathSciNet  Google Scholar 

  10. Arnold, L. Stochastic Differential Equations (John Wiley & Sons, 1971).

    Google Scholar 

  11. Pearle, P. & Squires, E. Bound state excitation, nucleon decay experiments and models of wave function collapse. Phys. Rev. Lett. 73, 1–5 (1994).

    Article  ADS  Google Scholar 

  12. Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).

    Article  ADS  Google Scholar 

  13. Ghirardi, G. C., Rimini, A. & Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Adler, S. L. Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A 40, 2935–2957 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ghirardi, G., Grassi, R. & Rimini, A. Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990).

    Article  ADS  Google Scholar 

  16. Penrose, R. Wavefunction collapse as a real gravitational effect. In Mathematical Physics 2000, 266–282 (World Scientific, 2000).

  17. Penrose, R. On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557–575 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fein, Y. Y. et al. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 15, 1242–1245 (2019).

    Article  Google Scholar 

  19. Gasbarri, G. et al. Testing the foundation of quantum physics in space via interferometric and non-interferometric experiments with mesoscopic nanoparticles. Commun. Phys. 4, 155 (2021).

    Article  Google Scholar 

  20. Belenchia, A. et al. Test quantum mechanics in space—invest US$1billion. Nature 596, 32–34 (2021).

    Article  ADS  Google Scholar 

  21. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. Machluf, S., Japha, Y. & Folman, R. Coherent Stern–Gerlach momentum splitting on an atom chip. Nat. Commun. 4, 2424 (2013).

    Article  ADS  Google Scholar 

  23. Bateman, J., Nimmrichter, S., Hornberger, K. & Ulbricht, H. Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat. Commun. 5, 4788 (2014).

    Article  ADS  Google Scholar 

  24. Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys. 21, 043047 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  25. Collett, B. & Pearle, P. Wavefunction collapse and random walk. Found. Phys. 33, 1495–1541 (2003).

    Article  MathSciNet  Google Scholar 

  26. Bahrami, M. Testing collapse models by a thermometer. Phys. Rev. A 97, 052118 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  27. Adler, S. L. & Vinante, A. Bulk heating effects as tests for collapse models. Phys. Rev. A 97, 052119 (2018).

    Article  ADS  Google Scholar 

  28. Alduino, C. et al. The projected background for the CUORE experiment. Eur. Phys. J. C 77, 543 (2017).

    Article  ADS  Google Scholar 

  29. Mishra, R., Vinante, A. & Singh, T. P. Testing spontaneous collapse through bulk heating experiments: an estimate of the background noise. Phys. Rev. A 98, 052121 (2018).

    Article  ADS  Google Scholar 

  30. Pobell, F. Matter and Methods at Low Temperatures Vol. 2 (Springer, 2007).

  31. Laloë, F., Mullin, W. J. & Pearle, P. Heating of trapped ultracold atoms by collapse dynamics. Phys. Rev. A 90, 052119 (2014).

    Article  ADS  Google Scholar 

  32. Bilardello, M., Donadi, S., Vinante, A. & Bassi, A. Bounds on collapse models from cold-atom experiments. Phys. A 462, 764–782 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  33. Kovachy, T. et al. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 114, 143004 (2015).

    Article  ADS  Google Scholar 

  34. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  35. Bahrami, M., Paternostro, M., Bassi, A. & Ulbricht, H. Proposal for a noninterferometric test of collapse models in optomechanical systems. Phys. Rev. Lett. 112, 210404 (2014).

    Article  ADS  Google Scholar 

  36. Nimmrichter, S., Hornberger, K. & Hammerer, K. Optomechanical sensing of spontaneous wave-function collapse. Phys. Rev. Lett. 113, 020405 (2014).

    Article  ADS  Google Scholar 

  37. Diósi, L. Testing spontaneous wave-function collapse models on classical mechanical oscillators. Phys. Rev. Lett. 114, 050403 (2015).

    Article  ADS  Google Scholar 

  38. Vinante, A. et al. Upper bounds on spontaneous wave-function collapse models using millikelvin-cooled nanocantilevers. Phys. Rev. Lett. 116, 090402 (2016).

    Article  ADS  Google Scholar 

  39. Vinante, A., Mezzena, R., Falferi, P., Carlesso, M. & Bassi, A. Improved noninterferometric test of collapse models using ultracold cantilevers. Phys. Rev. Lett. 119, 110401 (2017).

    Article  ADS  Google Scholar 

  40. Vinante, A. et al. Narrowing the parameter space of collapse models with ultracold layered force sensors. Phys. Rev. Lett. 125, 100404 (2020).

    Article  ADS  Google Scholar 

  41. Ferialdi, L. & Bassi, A. Continuous spontaneous localization reduction rate for rigid bodies. Phys. Rev. A 102, 042213 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  42. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. Vinante, A., The AURIGA Collaboration, et al. Present performance and future upgrades of the auriga capacitive readout. Class. Quantum Grav. 23, S103–S110 (2006).

  44. Armano, M. et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results. Phys. Rev. Lett. 116, 231101 (2016).

    Article  ADS  Google Scholar 

  45. Armano, M. et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz. Phys. Rev. Lett. 120, 061101 (2018).

    Article  ADS  Google Scholar 

  46. Carlesso, M., Bassi, A., Falferi, P. & Vinante, A. Experimental bounds on collapse models from gravitational wave detectors. Phys. Rev. D 94, 124036 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  47. Helou, B., Slagmolen, B., McClelland, D. E. & Chen, Y. LISA Pathfinder appreciably constrains collapse models. Phys. Rev. D 95, 084054 (2017).

    Article  ADS  Google Scholar 

  48. Carlesso, M., Paternostro, M., Ulbricht, H., Vinante, A. & Bassi, A. Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics. New J. Phys. 20, 083022 (2018).

    Article  ADS  Google Scholar 

  49. Pontin, A., Bullier, N., Toroš, M. & Barker, P. Ultranarrow-linewidth levitated nano-oscillator for testing dissipative wave-function collapse. Phys. Rev. Res. 2, 023349 (2020).

    Article  Google Scholar 

  50. Zheng, D. et al. Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator. Phys. Rev. Res. 2, 013057 (2020).

    Article  Google Scholar 

  51. Donadi, S. et al. Novel CSL bounds from the noise-induced radiation emission from atoms. Eur. Phys. J. C 81, 773 (2021).

    Article  ADS  Google Scholar 

  52. Donadi, S. et al. Underground test of gravity-related wave function collapse. Nat. Phys. 17, 74–78 (2021).

    Article  Google Scholar 

  53. Diósi, L. & Lukács, B. Calculation of X-ray signals from Károlyházy hazy space-time. Phys. Lett. A 181, 366–368 (1993).

    Article  ADS  Google Scholar 

  54. Karolyhazy, F. Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cim. A 42, 390–402 (1966).

    Article  ADS  Google Scholar 

  55. Fu, Q. Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806–1811 (1997).

    Article  ADS  Google Scholar 

  56. Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

    Google Scholar 

  57. Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  58. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).

    Article  ADS  Google Scholar 

  59. Rae, A. I. M. Can GRW theory be tested by experiments on SQUIDS? J. Phys. A 23, L57–L60 (1989).

    Article  Google Scholar 

  60. Buffa, M., Nicrosini, O. & Rimini, A. Dissipation and reduction effects of spontaneous localization on superconducting states. Found. Phys. Lett. 8, 105–125 (1995).

    Article  MATH  Google Scholar 

  61. Crowe, J. W. Trapped-flux superconducting memory. IBM J. Res. Dev. 1, 294–303 (1957).

    Article  Google Scholar 

  62. Lochan, K., Das, S. & Bassi, A. Constraining continuous spontaneous localization strength parameter λ from standard cosmology and spectral distortions of cosmic microwave background radiation. Phys. Rev. D 86, 065016 (2012).

    Article  ADS  Google Scholar 

  63. Adler, S. L., Bassi, A., Carlesso, M. & Vinante, A. Testing continuous spontaneous localization with Fermi liquids. Phys. Rev. D 99, 103001 (2019).

    Article  ADS  Google Scholar 

  64. Tilloy, A. & Stace, T. M. Neutron star heating constraints on wave-function collapse models. Phys. Rev. Lett. 123, 080402 (2019).

    Article  ADS  Google Scholar 

  65. Josset, T., Perez, A. & Sudarsky, D. Dark energy from violation of energy conservation. Phys. Rev. Lett. 118, 021102 (2017).

    Article  ADS  Google Scholar 

  66. Perez, A., Sahlmann, H. & Sudarsky, D. On the quantum origin of the seeds of cosmic structure. Class. Quantum Grav. 23, 2317–2354 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Landau, S. J., Scóccola, C. G. & Sudarsky, D. Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012).

    Article  ADS  Google Scholar 

  68. Das, S., Lochan, K., Sahu, S. & Singh, T. P. Quantum to classical transition of inflationary perturbations: continuous spontaneous localization as a possible mechanism. Phys. Rev. D 88, 085020 (2013).

    Article  ADS  Google Scholar 

  69. Cañate, P., Pearle, P. & Sudarsky, D. Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation. Phys. Rev. D 87, 104024 (2013).

    Article  ADS  Google Scholar 

  70. Das, S., Sahu, S., Banerjee, S. & Singh, T. P. Classicalization of inflationary perturbations by collapse models in light of BICEP2. Phys. Rev. D 90, 043503 (2014).

    Article  ADS  Google Scholar 

  71. León, G., Landau, S. J. & Piccirilli, M. P. Inflation including collapse of the wave function: the quasi-de Sitter case. Eur. Phys. J. C 75, 393 (2015).

    Article  ADS  Google Scholar 

  72. Banerjee, S., Das, S., Kumar, K. S. & Singh, T. P. Signatures of spontaneous collapse-dynamics-modified single-field inflation. Phys. Rev. D 95, 103518 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  73. León, G. & Piccirilli, M. P. Generation of inflationary perturbations in the continuous spontaneous localization model: the second order power spectrum. Phys. Rev. D 102, 043515 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  74. Martin, J. & Vennin, V. Cosmic microwave background constraints cast a shadow on continuous spontaneous localization models. Phys. Rev. Lett. 124, 080402 (2020).

    Article  ADS  Google Scholar 

  75. Gundhi, A., Gaona-Reyes, J. L., Carlesso, M. & Bassi, A. Impact of dynamical collapse models on inflationary cosmology. Phys. Rev. Lett. 127, 091302 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  76. Bengochea, G. R., León, G., Pearle, P. & Sudarsky, D. Discussions about the landscape of possibilities for treatments of cosmic inflation involving continuous spontaneous localization models. Eur. Phys. J. C 80, 1021 (2020).

    Article  ADS  Google Scholar 

  77. Goldwater, D., Paternostro, M. & Barker, P. Testing wave-function-collapse models using parametric heating of a trapped nanosphere. Phys. Rev. A 94, 010104 (2016).

    Article  ADS  Google Scholar 

  78. Schrinski, B., Stickler, B. A. & Hornberger, K. Collapse-induced orientational localization of rigid rotors. J. Opt. Soc. Am. B 34, C1–C7 (2017).

    Article  Google Scholar 

  79. Gierse, A. et al. A fast and self-acting release-caging-mechanism for actively driven drop tower systems. Microgravity Sci. Technol. 29, 403–414 (2017).

    Article  ADS  Google Scholar 

  80. Lotz, C. et al. Tests of additive manufacturing and other processes under space gravity conditions in the Einstein-Elevator. Logistics Journal: Proceedings 2020 (2020).

  81. Kaltenbaek, R. et al. Macroscopic quantum resonators (MAQRO): 2015 update. EPJ Quantum Technol. 3, 5 (2016).

    Article  Google Scholar 

  82. Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

    Article  ADS  Google Scholar 

  83. Paris, M. G. A. Quantum estimation for quantum technology. Int. J. Quantum Technol. 7, 125–137 (2009).

    Article  MATH  Google Scholar 

  84. Brunelli, M., Olivares, S. & Paris, M. G. A. Qubit thermometry for micromechanical resonators. Phys. Rev. A 84, 032105 (2011).

    Article  ADS  Google Scholar 

  85. Brunelli, M., Olivares, S., Paternostro, M. & Paris, M. G. A. Qubit-assisted thermometry of a quantum harmonic oscillator. Phys. Rev. A 86, 012125 (2012).

    Article  ADS  Google Scholar 

  86. Schrinski, B., Nimmrichter, S. & Hornberger, K. Quantum-classical hypothesis tests in macroscopic matter-wave interferometry. Phys. Rev. Res. 2, 033034 (2020).

    Article  Google Scholar 

  87. Schrinski, B., Hornberger, K. & Nimmrichter, S. How to rule out collapse models with BEC interferometry. Preprint at https://arxiv.org/abs/2008.13580 (2020).

  88. Marchese, M. M., Belenchia, A., Pirandola, S. & Paternostro, M. An optomechanical platform for quantum hypothesis testing for collapse models. New J. Phys. 23, 043022 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  89. Adler, S. L. & Bassi, A. Collapse models with non-white noises. J. Phys. A 40, 15083 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Smirne, A. & Bassi, A. Dissipative continuous spontaneous localization (CSL) model. Sci. Rep. 5, 12518 (2015).

    Article  ADS  Google Scholar 

  91. Bahrami, M., Smirne, A. & Bassi, A. Role of gravity in the collapse of a wave function: a probe into the Diósi-Penrose model. Phys. Rev. A 90, 062105 (2014).

    Article  ADS  Google Scholar 

  92. Nobakht, J., Carlesso, M., Donadi, S., Paternostro, M. & Bassi, A. Unitary unraveling for the dissipative continuous spontaneous localization model: application to optomechanical experiments. Phys. Rev. A 98, 042109 (2018).

    Article  ADS  Google Scholar 

  93. Carlesso, M., Ferialdi, L. & Bassi, A. Colored collapse models from the non-interferometric perspective. Eur. Phys. J. D 72, 159 (2018).

    Article  ADS  Google Scholar 

  94. Vinante, A., Gasbarri, G., Timberlake, C., Toroš, M. & Ulbricht, H. Testing dissipative collapse models with a levitated micromagnet. Phys. Rev. Res. 2, 043229 (2020).

    Article  Google Scholar 

  95. Toroš, M., Gasbarri, G. & Bassi, A. Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry. Phys. Lett. A 381, 3921–3927 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with R. Penrose and A. Vinante on various aspects of the models and related experiments. M.C. and M.P. are supported by UK EPSRC (grant no. EP/T028106/1). S.D. and A.B. acknowledge financial support from INFN. L.F., M.P., H.U. and A.B. acknowledge financial support from the H2020 FET Project TEQ (grant no. 766900). M.P. acknowledges the SFI-DfE Investigators Programme (grant no. 15/IA/2864), the Leverhulme Trust Research Project Grant UltraQute (grant no. RGP-2018-266), the Royal Society Wolfson Research Fellowship scheme (grant no. RSWF\R3\183013) and International Mobility Programme. H.U. acknowledges financial support from the Leverhulme Trust (grant no. RPG-2016-04) and EPSRC (grant no. EP/V000624/1). A.B. acknowledges the Foundational Questions Institute and Fetzer Franklin Fund, a donor advised fund of Silicon Valley Community Foundation (grant no. FQXi-RFP-CPW-2002), and the University of Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Bassi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlesso, M., Donadi, S., Ferialdi, L. et al. Present status and future challenges of non-interferometric tests of collapse models. Nat. Phys. 18, 243–250 (2022). https://doi.org/10.1038/s41567-021-01489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01489-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing