Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Error correction of a logical grid state qubit by dissipative pumping

Abstract

Stabilization of encoded logical qubits using quantum error correction is crucial for the realization of reliable quantum computers. Although error-correcting codes implemented using individual physical qubits require many separate systems to be controlled, codes constructed using a quantum oscillator offer the possibility to perform error correction with a single physical entity. One powerful encoding approach for oscillators is the grid state or Gottesman–Kitaev–Preskill (GKP) encoding, which allows small displacement errors to be corrected. Here we introduce and implement a dissipative map designed for physically realistic finite GKP codes, which performs quantum error correction of a logical qubit encoded in the motion of a single trapped ion. The correction cycle involves two rounds, which correct small displacements in position and momentum. We demonstrate an extension in coherence time of logical states by a factor of three using both square and hexagonal GKP codes. The simple dissipative map used for this correction can be viewed as a type of reservoir engineering, which pumps into the manifold of highly non-classical GKP qubit states.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparison of infinite and finite state measurements.
Fig. 2: Finite state measurement of logical observables.
Fig. 3: Pumping to the logical subspace.
Fig. 4: Effect of error correction on logical states.

Data availability

The datasets generated and analysed during this study will be made available on our group website (https://tiqi.ethz.ch/publications-and-awards/public-datasets.html) and on the ETH Research Collection (https://www.research-collection.ethz.ch/).

Code availability

The code used to perform experiments during this study is available from the corresponding author upon reasonable request.

References

  1. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. Intelligence Advanced Research Projects Activity (IARPA) LogiQ program.

  3. Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    Article  Google Scholar 

  4. Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  5. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2020).

    ADS  Article  Google Scholar 

  6. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  Article  Google Scholar 

  7. Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nat. Phys. 16, 822–826 (2020).

    Article  Google Scholar 

  8. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  Google Scholar 

  9. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS  Article  Google Scholar 

  10. Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Article  Google Scholar 

  11. Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Nat. Phys. 16, 827–831 (2020).

    Article  Google Scholar 

  12. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    ADS  Article  Google Scholar 

  13. Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).

    ADS  Article  Google Scholar 

  14. Flühmann, C., Negnevitsky, V., Marinelli, M. & Home, J. P. Sequential modular position and momentum measurements of a trapped ion mechanical oscillator. Phys. Rev. X 8, 021001 (2018).

    Google Scholar 

  15. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995).

    ADS  Article  Google Scholar 

  16. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).

    Article  Google Scholar 

  17. Lo, H.-Y. et al. Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets. Nature 521, 336–339 (2015).

    ADS  Article  Google Scholar 

  18. Kienzler, D. et al. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 347, 53–56 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  19. Hastrup, J., Park, K., Brask, J. B., Filip, R. & Andersen, U. L. Measurement-free preparation of grid states. npj Quantum Inf. 7, 17 (2021).

    ADS  Article  Google Scholar 

  20. Fukui, K., Tomita, A., Okamoto, A. & Fujii, K. High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054 (2018).

    Google Scholar 

  21. Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344 (2019).

    ADS  Article  Google Scholar 

  22. Flühmann, C. & Home, J. P. Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602 (2020).

    ADS  Article  Google Scholar 

  23. Duivenvoorden, K., Terhal, B. M. & Weigand, D. Single-mode displacement sensor. Phys. Rev. A 95, 012305 (2017).

    ADS  Article  Google Scholar 

  24. Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).

    ADS  Article  Google Scholar 

  25. Kienzler, D. et al. Quantum harmonic oscillator state control in a squeezed Fock basis. Phys. Rev. Lett. 119, 033602 (2017).

    ADS  Article  Google Scholar 

  26. Johansson, J., Nation, P. & Nori, F. QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012).

    ADS  Article  Google Scholar 

  27. Johansson, J., Nation, P. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013).

    ADS  Article  Google Scholar 

  28. Hastrup, J. & Andersen, U. L. Improved readout of qubit-coupled Gottesman–Kitaev–Preskill states. Quantum Sci. Technol. 6, 035016 (2021).

    ADS  Article  Google Scholar 

  29. Royer, B., Singh, S. & Girvin, S. M. Stabilization of finite-energy Gottesman-Kitaev-Preskill states. Phys. Rev. Lett. 125, 260509 (2020).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Campagne-Ibarcq for stimulating discussions, and J. Hastrup for valuable feedback on the manuscript. As we were performing experiments and writing this paper, we became aware of parallel theoretical work on finite GKP state measurement28 and on finite GKP state stabilization29. J.P.H. thanks E. M. Home, P. D. Home and Y. Iida for support during the theoretical part of this work. We acknowledge support from the Swiss National Science Foundation through the National Centre of Competence in Research for Quantum Science and Technology (QSIT) grant 51NF40-160591 and from the Swiss National Science Foundation under grant no. 200020 165555/1.

Author information

Authors and Affiliations

Authors

Contributions

J.P.H. devised the pumping scheme and performed the initial simulations, which were then extended by T.-L.N. B.d.N. programmed the experimental sequences and experiments were carried out by T.-L.N., B.d.N. and T.B. T.-L.N. performed the data analysis. The paper was written by J.P.H. with input from all the authors.

Corresponding author

Correspondence to Jonathan P. Home.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simulation of break-even (extended figure 1).

Simulation showing break-even where the lifetime of a square encoded YL state (red solid) can be extended longer than that of a \(\left(\left|0\right\rangle + \left|1\right\rangle\right)/\sqrt{2}\) Fock state superposition (dashed black). An exponential fit (dashed red) is also shown.

Extended Data Fig. 2 Displacements for projection to logical states (extended figure 2).

Illustration of displacements in phase space during logical state initialization into an eigenstate of a) XL, b) YL or c) ZL. Starting at the origin, we apply a global displacement (green arrows) followed by a measurement of the logical state (thick orange arrows, short bias displacements for finite measurements are not shown) and an appropriate feedback (blue arrows). The wave packet is split, following different feedback paths depending on whether it is a + eigenstate (red arrows) or − eigenstate (blue arrows) of the logical operator. We can initialize into either + or – eigenstates by tuning the feedback direction as shown by the solid or dashed arrows respectively.

Extended Data Fig. 3 Noise model and comparison with experiment (extended figure 3).

a) Trap frequency measured at a time delayed from a 50 Hz line trigger. The color shows the probability of finding the ion in \({\left|0\right\rangle }_{S}\) after the frequency calibration experiment described in the text. The solid line is a fit using the five lowest harmonics of 50 Hz. b) A measurement of motional coherence of the state \((\left|0\right\rangle +\left|1\right\rangle )/\sqrt{2}\), taken using a Ramsey sequence. An exponential fit yields a coherence time of 16.4(9) ms. The solid line is the result of the Monte-Carlo wavefunction simulation based on the noise parameters given in the text. c) Decay simulation of a GKP \(\left|{1}_{L}\right\rangle\) logical state under the independent action of each error channel: Markovian dephasing (orange), 50 Hz noise (green) and heating (blue) with (solid lines) and without (dashed lines) stabilization. For each error channel we optimise the frequency at which we apply the error correction. d-e) Comparison of data with simulation for the time evolution of logical readouts \(\left\langle {X}_{L}^{f}\right\rangle\) (orange), \(\left\langle {Y}_{L}^{f}\right\rangle\) (green) and \(\left\langle {Z}_{L}^{f}\right\rangle\) (blue) with stabilization (solid lines) and without stabilization (dashed lines) for both the d) square and e) hexagonal finite-GKP encoding. The simulation reproduces qualitatively the experimental data for both. The gray curves represent the coherence of the \((\left|0\right\rangle +\left|1\right\rangle )/\sqrt{2}\) Fock state superposition extracted from b).

Extended Data Fig. 4 Full data for logical readouts (extended figure 4).

Full datasets for logical readouts of \(\left\langle {X}_{L}^{f}\right\rangle\) (orange), \(\left\langle {Y}_{L}^{f}\right\rangle\) (green) and \(\left\langle {Z}_{L}^{f}\right\rangle\) (blue) with stabilization (circles) and without stabilization (crosses) for both a) square and b) hexagonal finite-GKP encoding. Exponential fits are also shown for the cases with stabilization (solid lines) and without stabilization (dashed lines). The short-time parts of both datasets are shown in figure 4 of the main text. The gray curves represent the coherence of the \((\left|0\right\rangle +\left|1\right\rangle )/\sqrt{2}\) Fock state superposition.

Extended Data Table 1 Parameters used to prepare an approximate GKP eigenstate \(\left|{\psi }_{L}\right\rangle\) in equation (16) using the measurement free method from19. In the notation of the main text \(\left|-{Z}_{L}\right\rangle =\left|{1}_{L}\right\rangle\)
Extended Data Table 2 Pulse sequence used for projective preparation of a GKP eigenstate \(\left|{\psi }_{L}\right\rangle\). It consists of three state-dependent displacements and one global displacement. Here \(\delta =\sqrt{\pi }/2\) and \(\epsilon \approx 0.06\sqrt{\pi }\). In the notation of the main text \(\left|+{Z}_{L}\right\rangle =\left|{0}_{L}\right\rangle\) and \(\left|-{Z}_{L}\right\rangle =\left|{1}_{L}\right\rangle\)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Neeve, B., Nguyen, TL., Behrle, T. et al. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022). https://doi.org/10.1038/s41567-021-01487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01487-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing