Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Depth-targeted energy delivery deep inside scattering media

Abstract

Diffusion makes it difficult to predict and control wave transport through a medium. Overcoming wave diffusion to deliver energy into a target region deep inside a diffusive system is an important challenge for applications, but also represents an interesting fundamental question. It is known that coherently controlling the incident wavefront allows diffraction-limited focusing inside a diffusive system, but in many applications, the targets are significantly larger than a focus and the maximum deliverable energy remains unknown. Here we introduce the ‘deposition matrix’, which maps an input wavefront to the internal field distribution, and we theoretically predict the ultimate limit on energy enhancement at any depth. Additionally, we find that the maximum obtainable energy enhancement occurs at three-fourths the thickness of the diffusive system, regardless of its scattering strength. We experimentally verify our predictions by measuring the deposition matrix in two-dimensional diffusive waveguides. The experiment gives direct access to the internal field distribution from the third dimension, and we can excite the eigenstates to enhance or suppress the energy within an extended target region. Our analysis reveals that such enhancement or suppression results from both selective transmission-eigenchannel excitation and constructive or destructive interference among these channels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental platform for investigating energy deposition in a diffusive system.
Fig. 2: Numerical simulation and analytic prediction of deposition eigenvalues.
Fig. 3: Experimental measurement of deposition eigenchannels.
Fig. 4: Relation between deposition and transmission eigenchannels.

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  Google Scholar 

  2. Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    Article  ADS  Google Scholar 

  3. Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).

    Article  ADS  Google Scholar 

  4. Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141–158 (2020).

    Article  Google Scholar 

  5. Yoon, J. et al. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci. Rep. 5, 13289 (2015).

    Article  ADS  Google Scholar 

  6. Ruan, H. et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Sci. Adv. 3, eaao5520 (2017).

    Article  Google Scholar 

  7. Pernot, M. et al. In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J. Neurosurg. 106, 1061–1066 (2007).

    Article  Google Scholar 

  8. Liew, S. F. et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photon. 3, 449–455 (2016).

    Article  Google Scholar 

  9. Vellekoop, I. M. & Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  10. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  11. Vellekoop, I. M., Van Putten, E., Lagendijk, A. & Mosk, A. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    Article  ADS  Google Scholar 

  12. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  13. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photon. 7, 300–305 (2013).

    Article  ADS  Google Scholar 

  14. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  Google Scholar 

  15. Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

    Article  ADS  Google Scholar 

  16. Fink, M. et al. Time-reversed acoustics. Rep. Prog. Phys. 63, 1933 (2000).

    Article  ADS  Google Scholar 

  17. Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    Article  ADS  Google Scholar 

  18. Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497–502 (2017).

    Article  Google Scholar 

  19. Popoff, S. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  20. Choi, W., Mosk, A. P., Park, Q.-H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  21. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

    Article  ADS  Google Scholar 

  22. Yu, H. et al. Measuring large optical transmission matrices of disordered media. Phys. Rev. Lett. 111, 153902 (2013).

    Article  ADS  Google Scholar 

  23. Popoff, S. M., Goetschy, A., Liew, S. F., Stone, A. D. & Cao, H. Coherent control of total transmission of light through disordered media. Phys. Rev. Lett. 112, 133903 (2014).

    Article  ADS  Google Scholar 

  24. Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).

    Article  ADS  Google Scholar 

  25. Davy, M., Shi, Z., Park, J., Tian, C. & Genack, A. Z. Universal structure of transmission eigenchannels inside opaque media. Nat. Commun. 6, 6893 (2015).

    Article  ADS  Google Scholar 

  26. Yılmaz, H., Hsu, C. W., Yamilov, A. & Cao, H. Transverse localization of transmission eigenchannels. Nat. Photon. 13, 352–358 (2019).

    Article  ADS  Google Scholar 

  27. Bender, N., Yamilov, A., Yılmaz, H. & Cao, H. Fluctuations and correlations of transmission eigenchannels in diffusive media. Phys. Rev. Lett. 125, 165901 (2020).

    Article  ADS  Google Scholar 

  28. Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).

    Article  ADS  Google Scholar 

  29. Cheng, X. & Genack, A. Z. Focusing and energy deposition inside random media. Opt. Lett. 39, 6324–6327 (2014).

    Article  ADS  Google Scholar 

  30. Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photon. 8, 58–64 (2014).

    Article  ADS  Google Scholar 

  31. Ambichl, P. et al. Focusing inside disordered media with the generalized Wigner-Smith operator. Phys. Rev. Lett. 119, 033903 (2017).

    Article  ADS  Google Scholar 

  32. Horodynski, M. et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photon. 14, 149–153 (2020).

    Article  ADS  Google Scholar 

  33. Jeong, S. et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photon. 12, 277–283 (2018).

    Article  ADS  Google Scholar 

  34. Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).

    Article  ADS  Google Scholar 

  35. Katz, O., Ramaz, F., Gigan, S. & Fink, M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat. Commun. 10, 717 (2019).

    Article  ADS  Google Scholar 

  36. Durand, M., Popoff, S. M., Carminati, R. & Goetschy, A. Optimizing light storage in scattering media with the dwell-time operator. Phys. Rev. Lett. 123, 243901 (2019).

    Article  ADS  Google Scholar 

  37. Lambert, W., Cobus, L. A., Frappart, T., Fink, M. & Aubry, A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc. Natl Acad. Sci. USA 117, 14645–14656 (2020).

    Article  MathSciNet  Google Scholar 

  38. Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).

    Article  ADS  Google Scholar 

  39. Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).

    Article  Google Scholar 

  40. Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).

  41. Beenakker, C. W. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    Article  ADS  Google Scholar 

  42. Marchenko, V. A. & Pastur, L. A. Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1, 457 (1967).

    Article  MATH  Google Scholar 

  43. Goetschy, A. & Stone, A. D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

    Article  ADS  Google Scholar 

  44. van Rossum, M. C. W. & Nieuwenhuizen, T. M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313 (1999).

    Article  ADS  Google Scholar 

  45. Pnini, R. & Shapiro, B. Fluctuations in transmission of waves through disordered slabs. Phys. Rev. B 39, 6986–6994 (1989).

    Article  ADS  Google Scholar 

  46. Sarma, R., Yamilov, A., Neupane, P., Shapiro, B. & Cao, H. Probing long-range intensity correlations inside disordered photonic nanostructures. Phys. Rev. B 90, 014203 (2014).

    Article  ADS  Google Scholar 

  47. Yamilov, A. G. et al. Position-dependent diffusion of light in disordered waveguides. Phys. Rev. Lett. 112, 023904 (2014).

    Article  ADS  Google Scholar 

  48. Sarma, R., Yamilov, A., Petrenko, S., Bromberg, Y. & Cao, H. Control of energy density inside a disordered medium by coupling to open or closed channels. Phys. Rev. Lett. 117, 086803 (2016).

  49. Ojambati, O. S., Mosk, A. P., Vellekoop, I. M., Lagendijk, A. & Vos, W. L. Mapping the energy density of shaped waves in scattering media onto a complete set of diffusion modes. Opt. Express 24, 18525–18540 (2016).

    Article  ADS  Google Scholar 

  50. Koirala, M., Sarma, R., Cao, H. & Yamilov, A. Inverse design of perfectly transmitting eigenchannels in scattering media. Phys. Rev. B 96, 054209 (2017).

  51. Hong, P., Ojambati, O. S., Lagendijk, A., Mosk, A. P. & Vos, W. L. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844–849 (2018).

    Article  ADS  Google Scholar 

  52. Fang, P. et al. Universality of eigenchannel structures in dimensional crossover. Phys. Rev. B 99, 094202 (2019).

    Article  ADS  Google Scholar 

  53. Uppu, R., Adhikary, M., Harteveld, C. A. M. & Vos, W. L. Spatially shaping waves to penetrate deep inside a forbidden gap. Phys. Rev. Lett. 126, 177402 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.C. thanks A. Genack for stimulating discussions. Funding: this work is partly supported by the Office of Naval Research (ONR) under grant no. N00014-20-1-2197, and by the National Science Foundation under grant nos. DMR-1905465, DMR-1905442 and OAC-1919789.

Author information

Authors and Affiliations

Authors

Contributions

N.B. conducted the experiments and analysed the data. A.Y. performed the numerical simulations. A.G. developed the analytical model. H.Y. participated in the experimental study. C.W.H. contributed to the theoretical analysis. H.C. initiated the project and supervised the research. All the authors contributed to manuscript preparation.

Corresponding authors

Correspondence to Alexey Yamilov or Hui Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alexandre Aubry, Oluwafemi Ojambati and Patrick Sebbah for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Source Data Fig. 2

Cartesian plot data with descriptions.

Source Data Fig. 3

Cartesian plot data with descriptions.

Source Data Fig. 4

Cartesian plot data with descriptions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bender, N., Yamilov, A., Goetschy, A. et al. Depth-targeted energy delivery deep inside scattering media. Nat. Phys. 18, 309–315 (2022). https://doi.org/10.1038/s41567-021-01475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01475-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing