INSIGHT | EDITORIAL

Check for updates

Image: Christof Weitenberg et al. Cover Design: Allen Beattie

SPRINGER NATURE LONDON

The Campus, 4 Crinan Street, London N19XW T: +44 207 833 4000 F: +44 207 843 4563 nature.physics@springernature.com

CHIEF EDITOR ANDREA TARONI

INSIGHT EDITORS RICHARD BRIERLEY, YUN LI, LEONARDO BENINI

PRODUCTION EDITOR FRANCESCA SANDFORD

SENIOR COPY EDITOR KEVIN SHERIDAN

ART EDITOR ALLEN BEATTIE

EDITORIAL ASSISTANT JAMES TATAM

EDITORIAL DIRECTOR ALISON WRIGHT

EDITOR-IN-CHIEF, NATURE JOURNALS MAGDALENA SKIPPER

Ultracold quantum technologies

he creation of a Bose-Einstein condensate was a major milestone in the field of ultracold gases. Over seventy years passed from the first ideas predicting this phase of matter, which is characterized by a macroscopic occupation of a single quantum state, to its eventual experimental observation in 1995. But this was more than the confirmation of a long-standing theoretical prediction. Since this achievement, a rich toolbox provided by ultracold gases has become central to the study of quantum many-body physics. In this Insight we present an overview of some of the latest experimental advances that are pushing the field still further, expanding its influence across physics.

As discussed in the Comment by Jook Walraven, the achievement of Bose–Einstein condensation required a series of breakthroughs in the development of trapping, cooling and detection techniques. The rest of the collection is made up of Review Articles that show how fast the pace of progress has been. The fundamental methods needed to cool and probe ultracold gases have continued to improve, and new approaches to trapping and control have emerged. This suite of ultracold quantum technologies has reinforced the position of ultracold gases as the pre-eminent platform for studying collective quantum phenomena, while extending capabilities at the single-atom level.

It is not possible to do justice to a field as broad as ultracold gases in a single issue. In particular, there have been significant advances in engineering practical devices for applications including metrology and quantum computing, with commercial interest rapidly growing. We are sure that the collection of experimental technologies reviewed here will play a key role in these developments and in many fundamental and applied breakthroughs that are yet to come.

> Richard Brierley, Senior Editor Yun Li, Senior Editor Leonardo Benini, Associate Editor

Published online: 7 December 2021 https://doi.org/10.1038/s41567-021-01461-3

COMMENT

Cold atoms stay cool Jook Walraven	p1294
REVIEW ARTICLES	
Laser cooling for quantum gases Florian Schreck and Klaasjan van Druten	p1296
Spectroscopic probes of quantum gases Chris J. Vale and Martin Zwierlein	p1305
Quantum gas microscopy for single atom and spin detection Christian Gross and Waseem S. Bakr	p1316
Quantum science with optical tweezer arrays of ultracold atoms and molecules Adam M. Kaufman and Kang-Kuen Ni	p1324
Quantum gases in optical boxes Nir Navon, Robert P. Smith and Zoran Hadzibabic	p1334
Tailoring quantum gases by Floquet engineering Christof Weitenberg and Juliette Simonet	p1342
Developments in atomic control using ultracold magnetic lanthanides Matthew A. Norcia and Francesca Ferlaino	p1349